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ABSTRACT

Popularity prediction for the growing social images has opened
unprecedented opportunities for wide commercial applications,
such as precision advertising and recommender system. While a
few studies have explored this significant task, little research has
addressed its unstructured properties of both visual and textual
modalities, and further considered to learn effective representation
from multi-modalities for popularity prediction. To this end, we
propose a model named User-guided Hierarchical Attention Net-
work (UHAN) with two novel user-guided attention mechanisms to
hierarchically attend both visual and textual modalities. It is capable
of not only learning effective representation for each modality, but
also fusing them to obtain an integrated multi-modal representation
under the guidance of user embedding. As no benchmark dataset
exists, we extend a publicly available social image dataset by adding
the descriptions of images. The comprehensive experiments have
demonstrated the rationality of our proposed UHAN and its better
performance than several strong alternatives.
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Figure 1: Sampled examples of social images in our dataset.

Each row corresponds to one user. The images in each row

are sorted from more popular (left) to less popular (right).

1 INTRODUCTION

In the era of Web 2.0, user-generated content (UGC) in online
social networks becomes globally ubiquitous and prevalent with
the development of information technology and thus incurs heavy
information explosion. The task of UGC popularity prediction [35]
tries to infer total count of interactions between users and specific
UGC (e.g., click, like, and view). This task is crucial for both content
providers and consumers, and finds a wide range of real-world
applications, including online advertising [20] and recommender
system [4].

Social image is perhaps one of the most representative UGC.
It has gained a rapid growth in recent years and exists widely
in various social medias, such as Flickr, Instagram, Pinterest, and
WeChat. Due to different themes and purposes of different social
medias, social images in these platforms contain not exactly the
same elements. Among them, the three most common ones are
social image itself (visual modality), its corresponding description
(textual modality) and publisher (user). Naturally, the foregoing
raises an interesting and fundamental challenge with regard to
popularity prediction, i.e., how to effectively fuse knowledge from
both visual and textual modalities while simultaneously consider
user influence for predicting social image popularity.

While a few studies have investigated the problem of social
image popularity prediction [9, 16, 40, 41], most of them largely
rely on carefully designed hand-crafted features, but ignore to
automatically learn joint and effective representation from multi-
modalities, especially for unstructuredmodalities such as image and
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Figure 2: Diagram of user-guided hierarchical attention mechanism for an example from Flickr. ⊗ denotes the user-guided

intra-attention mechanism while ⊕ represents the user-guided inter-attention mechanism. Red font in description indicates

larger attention weights.

text. On the other hand, some studies have considered to combine
some or all of user, text, and image information sources in their
studies [7, 23, 29], and multi-modal learning has achieved great
success in tasks like visual question answering (VQA) [1] and image
captioning [15]. Nevertheless, the effort of applying multi-modal
learning to multi-modal image popularity prediction problem has
not been observed, let alone further considering user influence in
multi-modal learning for this problem.

In this paper, we propose a user-guided hierarchical attention
network (UHAN) for addressing the social image popularity pre-
diction problem, which is to predict the future popularity of a new
image to be published on social media. UHAN proposes two novel
user-guided attention mechanisms to hierarchically attend both
visual and textual modalities (see Figure 2). More specifically, the
overall framework mainly consists of two attention layers which
form a hierarchical attention network. In the bottom layer, the
user-guided intra-attention mechanism with a personalized multi-
modal embedding correlation scheme is proposed to learn effective
embedding for each modality. In the middle layer, the user-guided
inter-attention mechanism for cross-modal attention is developed
to determine the relative importance of each modality for each
user. Besides, we adopt a shortcut connection to associate the user
embedding with the learned multi-modal embedding, hoping to
verify its additional influence on popularity.

The intuition of utilizing user guidance behind our model is that
each user has its own characteristics and preferences, which will
influence the popularity of his images. To verify this, we sample
several social images from three selected users and show them in
Figure 1. According to the illustration below the figure, we can
easily find that the user in the middle row has several images about
dogs and most of them are more popular than his other images.
For the user in the bottom row, a similar phenomenon can be seen
that his images about cultural and natural landscapes are more

attractive for ordinary users. Moreover, it is intuitive that the visual
and textual modalities are promising to complement each other.
This is motivated by the example shown in Figure 2, “Yamaha R1”
is a major indicator for the bike in the image and vice versa. Jointly
modeling them will help to capture more useful information. As
there is no publicly available benchmark dataset which involves
both unstructured visual and textual modalities, we build such
a social image dataset by simply extending an existing publicly
accessible dataset [40] by crawling their corresponding descriptions
and associating them with the entries in the dataset. We conduct
comprehensive experiments on this dataset and have demonstrated
that 1) our proposed UHAN could achieve better results than several
strong alternatives, 2) both visual and textual modalities are indeed
beneficial for the studied problem, and 3) the design of UHAN is
rational, with two effective user-guided attention mechanisms.

The main contributions of this work can be summarized as three-
fold,
• We propose a novel user-guided hierarchical attention network
that effectively learns multi-modal representation of user person-
alization, visual and textual modalities, and seamlessly integrates
the representation learning and image popularity prediction into
an end-to-end fashion.
• Two novel user-guided attention mechanisms are presented,
i.e., user-guided intra-attention mechanism to learn each uni-
modal representation and inter-attention mechanism to fuse
multi-modal representations.
• To verify the benefits of our model, we get a real-world multi-
modal social image dataset by simply extending a publicly ac-
cessible dataset [40] with crawled image title and introduction.
We make the source code and the dataset1 publicly available
to facilitate other studies to repeat experiments and do further
research.

1https://github.com/Autumn945/UHAN

https://github.com/Autumn945/UHAN


2 RELATEDWORK

We briefly review relevant studies to our work from three aspects.
Research of popularity prediction is first introduced, including dif-
ferent problem settings andmethods. Afterwards, deep multi-modal
learning models in literature are categorized and the connection
to our model is clarified. Lastly, existing representative attention
mechanisms are introduced and the novelty of ours is emphasized.

2.1 Popularity Prediction

A large body of studies has focused on social media popularity
prediction and this field of research has continued for more than
half a decade [33, 35]. [8, 27, 37, 45] have studied social content
prediction from the perspective of textual modality. Most of them
are mainly based on hand-crafted features. For example, basic term
frequencies and topic features extracted from topic modeling [3]
are considered. By leveraging the continuous time modeling ability
of point process [10], Zhao et al. [45] proposed to model dynamic
tweet popularity and later Liu et al. [42] developed a feature-based
point process to predict dynamic paper citation count. However,
as [12] emphasized, dynamic data of popularity are not easy to
obtained, which limits its real application. Thus in this paper, we
focus on predicting future popularity of new social images to be
published on social media.

In recent years, visual modality has attracted increasing atten-
tion in literature [5, 16, 40, 41]. Among them, Chen et al. [5] adopted
transductive learning, which needs to do model learning and pre-
diction simultaneously and cannot be easily extended to online
prediction. Since the method is proposed for predicting micro-video
popularity, it is different from our task. Wu et al. [40, 41] studied
social image popularity from the perspective of sequential predic-
tion. They model temporal context (i.e., feature from other images
published previously) of target image for prediction, which is in
parallel to our study. [9, 16] are the most relevant study to ours.
However, they relies on time-consuming feature engineering to
obtain various hand-crafted visual and textual features, and the
feature representation and model learning are separated into two
different stages.

In this paper, we explore social image popularity prediction
problem by focusing on integrating the representation learning
from unstructured textual and visual modalities and popularity
prediction into a unified model.

2.2 Deep Multi-modal Learning

There exists a long history of studies on multi-modal learning [39]
which concentrates on learning from multiple sources with dif-
ferent modalities [44]. In recent years, with the flourish of deep
learning methodologies [21], deep multi-modal learning models be-
gin to catch up. As Ngiam et al. [30] summarized, deep multi-modal
learning involves three types of settings: 1) multi-modal fusion,
2) cross modality learning, and 3) shared representation learning.
Among them, multi-modal fusion satisfies our problem setting.

Nojavanasghari et al. [31] studied persuasiveness prediction by
fusing visual, acoustic and textual features with densely connected
feed-forward neural network. Lynch et al. [26] proposed to concate-
nate deep visual features and bag-of-words based textual feature
vector for learning to rank search results. To ensure fast similarity

computation, hashing-based deepmulti-modal learning are also pro-
posed [14, 38]. Moreover, deep multi-modal learning has achieved
a great success in VQA, developing from early simple multi-modal
fusion [1] to later more complex deep methods [17, 29]. However,
to our knowledge, none of multi-modal deep learning methods has
been proposed to multi-modal popularity prediction task, which
motivates us to take a step towards this end.

2.3 Attention Mechanism

To select important regions from images [28] or focus more on
some specific words relevant to machine translation [2], attention
mechanism has been proposed and sprung up. As the motivation
illustrated in Section 1, we focus more on multi-modal attention. It
has two important applications, i.e., visual question answering [1]
and image captioning [15]. Many standard multi-modal based meth-
ods only utilize textual representation to learn attention for visual
representation [6, 25, 43], without providing attentions to textual
modality. Until recently, attentions to both visual and textual modal-
ities are proposed, like dual attention networks [29]. On the other
hand, personalization is rarely considered by multi-modal attention
learning methods except [7]. However, this study only utilizes a
single attention mechanism to generate word sequence, which leads
the methodology fundamentally different from our proposed one
which proposes user-guided hierarchical attention mechanism for
multi-modal popularity prediction.

3 OUR PROPOSED UHAN

The overall architecture of the proposed UHAN is presented in
Figure 3. The input to UHAN is a triple each time, consisting of tex-
tual representation, visual representation, and user representation,
which will be clarified later. Based on this, UHAN first exploits the
proposed user-guided intra-attention to learn attended embeddings
for textual and visual modalities, respectively. Moreover, UHAN
adopts the novel user-guided inter-attention to judge the impor-
tance of different modalities for specific users. Through this way,
it further gets an attended multi-modal representation. Besides, a
shortcut connection is adopted to associate user embedding with
the learned multi-modal embedding for final popularity prediction.

Before we continue to specify the model, we first formally define
the multi-modal social image popularity prediction problem and
provide some basic notations (Section 3.1). Then we introduce the
input representation for textual and visual modalities (Section 3.2).
In what follows, we address the user-guided hierarchical attention
mechanism (Section 3.3). Finally, popularity generation and its
learning process are illustrated (Section 3.4).

3.1 Problem Definition

Before we give the formulation of the studied problem, we first
introduce some mathematical notations used later. Throughout this
paper, we denote matrices by bold uppercase letters and vectors by
bold lowercase letters, respectively.We first indicate social image set
asI and its size isN . As discussed in Section 1, we focus on the three
most basic elements of social images. For the i-th image instance
Ii in the set, we denote its detailed representation as {Vi ,Hi , ui },
where Vi , Hi , and ui correspond to visual representation, textual
representation, and user representation, respectively. When the end
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Figure 3: Architecture of our proposed model UHAN. For simplicity, the dimensions of user embedding and hidden state of

LSTM are both set to 512, equal to that of visual modality. However, the above model can be easily extended to the situation

that dimensions of different modalities are not equal, just by necessary linear transformation.

time is determined, we can get the real popularity score of Ii by
considering the total number of interactions during the period of
time, which is defined as yi . Accordingly, we formally define the
problem based on the above notations:

Problem 1 (Multi-modal Social Image Popularity Pre-

diction). Given a new image Ii to be published on social media,
the target is to learn a function f : Vi ,Hi , ui → yi to predict its
popularity score in the end.

In what follows, we take the image instance Ii as an example
to introduce UHAN. For simplicity, we will omit the superscript
i of related notations later. In this paper, we use the terms, i.e.,
embedding and representation, interchangeably.

3.2 Construction of Input Representation

Extracting visual representation: The image embedding is ob-
tained by a pre-trained VGGNet model [34]. To satisfy the require-
ment of the input size for the model, we first rescale all images
to 448×448. By convention [29], we regard the last pooling layer
of VGGNet as a feature extractor to gain visual representation
V = [v1, . . . , vM ] where vm ∈ R512. M denotes the number of
image regions which is equal to 196 in this work. Consequently, an
image can be expressed as 196 vectors, each of which has dimension
512.
Encoding textual representation: For the social image Ii , it has
a description D = {wt }

l
t=1 where wt is a one-hot embedding at

position t . l is the length of the description and should satisfy
the requirement l ≤ L, where L is the maximum length of the
description and denoted as 50 in Figure 3. Hence we can get the
original textual representation H = [w1, . . . ,wl ], as required by
the Problem 1.

Due to the good performance of modeling word sequence to
understand language [6, 36], we further adopt long-short term
memory (LSTM) [13] to encode the textual representationH. Before

we feed the one-hot embeddings of words into LSTM, we first
convert each of them into a low-dimensional dense vector w̌t by a
word embedding matrixWW :

w̌t =WWwt . (1)

After collecting the vectors {w̌t }
l
t=1, we feed them into LSTM to

generate sequential hidden states. At each time step, a LSTM unit
has an input gate it , output gate ot , forget gate ft , and cell state ct .
The corresponding hidden state ht is calculated through the follow
equations:

it = σ (WW i w̌t +WHiht−1 + bi ), (2)

ft = σ (WW f w̌t +WHf ht−1 + bf ), (3)

ot = σ (WWow̌t +WHoht−1 + bo ), (4)

ct = ft ◦ ct−1 + it ◦ tanh(WWc w̌t +WHcht−1 + bc ), (5)

ht = ot ◦ tanh(ct ), (6)
where ◦ is the Hadamard product.WW ·,WH · and b· are the param-
eters of LSTM to be learned. σ is the sigmoid activation function.
After recurrent computation for each time step, we gather a series
of hidden states {ht }lt=1. We denote them as Ȟ = [h1, . . . , hl ] ,
which will be later used in the user-guided hierarchical attention
computation.
Encoding user representation: The publisher (user) of the social
image Ii is originally expressed as a one-hot representation u. To
convert it into a low-dimensional embedding ǔ, we define a user
embedding matrix WU and perform the following transformation:

ǔ =WU u. (7)

Intuitively, user embeddings could capture some user hidden charac-
teristics such as preference, which will be used to guide the learning
of multi-modal representation.

In summary, we have visual representation V, textual embed-
dings Ȟ, and user embedding ǔ as input for the user-guided hier-
archical attention computation. We should emphasize that UHAN



will learn all the above parameters together, including the user and
word embedding matrices, and the parameters of LSTM.

3.3 User-guided Hierarchical Attention

Mechanism

Our model UHAN performs user-guided intra-attention and inter-
attention computations in different layers, which form a hierarchi-
cal attention network that could learn more suitable representations
from visual and textual modalities.
User-guided intra-attention mechanism: This attention mech-
anism is proposed to attend each modality to obtain textual and
visual embeddings, respectively. Thus, it actually contains two at-
tention computations, one for visual modality and the other for
textual modality. However, we should emphasize that the attention
computation for each modality is based on a personalized multi-
modal embedding correlation scheme which involves user, visual
and textual embeddings simultaneously.

We first explicitly indicate the dimension of all the input to the
user-guided hierarchical attention computation, i.e., V ∈ R196×512,
Ȟ ∈ RL×KW , and ǔ ∈ RKU . KW and KU are the dimensions of
word and user embeddings, respectively. To be consistent with
what Figure 3 shows, we let L = 50, KW = 512, and KU = 512
for ease of presentation. Before introducing how to compute the
two attentions, we should clarify that the attentions for visual and
textual modalities are calculated simultaneously.

(1) Attention computation for visual modality. Based on
the above specification, we illustrate how to implement the em-
bedding correlation scheme to execute attention computation for
visual modality. We convert textual embedding matrix into a vector
representation h̄ through the follow equation:

h̄ =
1
l
· Ȟ1⃗, (8)

where 1⃗ is a vector with all elements to be 1. This equation can be
regarded as a mean-pooling operation applied to the hidden states
of the word sequence to get an integrated textual representation for
attending visual modality. After that, the representations of user
and text are both vectors.

We formally define the computational formula of personalized
multi-modal embedding correlation scheme for determining the
visual attention as follows:

rV ,m =W1
V

(
tanh(W1

Vvvm ) ◦ tanh(W1
Vu ǔ) ◦ tanh(W1

V t h̄)
)
, (9)

where rV ,m denotes the importance score of regionm in the tar-
get image. tanh is adopted to ensure values of different modali-
ties mapped to the same narrow space, which benefits gradient
based optimization algorithms [18]. The parameter matrices of
intra-attention to visual modality satisfy the following require-
ments, i.e., W1

V ∈ R
1×512, W1

Vv ,W
1
Vu and W1

V t ∈ R
512×512. The

intuitive interpretation of the above equation is that it could be
regarded as calculating the relevance of each visual region to user
and textual embeddings jointly. Therefore, user and text can guide
attention learning of visual modality and indicate which region of
image is important to reveal popularity. Suppose αV denotes the
probability distribution of attention importance, which is given by:

αV = Softmax(rV ). (10)

Finally, based on the attention distribution, we can gain an attended
whole image representation v̇ by:

v̇ =
∑
m

αV ,m · vm . (11)

(2) Attention computation for textual modality. Following
Equation 8, we first define the mean-pooling formula to get a vector
representation v̄ of visual modality as follows:

v̄ =
1

196
· V1⃗. (12)

Likewise, attentions to each hidden state representation of the word
sequence are further calculated by:

rT ,t =W1
T

(
tanh(W1

T tht ) ◦ tanh(W1
Tu ǔ) ◦ tanh(W1

Tv v̄)
)
, (13)

αT = Softmax(rT ), (14)
where the parameter matrices of intra-attention to textual modality
satisfy W1

T ∈ R
1×512, W1

Tv ,W
1
Tu and W1

T t ∈ R
512×512. rT ,t rep-

resents the importance score of hidden state ht and αT denotes
the probability distribution of attention importance as well. It is
necessary to conduct the importance calculation since some words
in a textual description, including its corresponding title, may be ir-
relevant to popularity and even off-topic. Consequently, we can get
the attended whole text embedding ḣ via the following equation:

ḣ =
∑
t
αT ,t · ht . (15)

In summary, we obtain the attended whole image embedding
v̇ and text embedding ḣ through the user-guided intra-attention
mechanism.We further feed these two embeddings into user-guided
inter-attention computation.
User-guided inter-attention mechanism: The inter-attention
mechanism is proposed to capture different importance of the stud-
ied two modalities. The intuition lies in the aspect that different
users have diverse concentrations on textual and visual modalities
of their posted images. And even for the same user, when he is pre-
pared to post an image, he might focus more on different modalities
in different situations. The imbalance of attention mights makes
the two modalities have different influence on popularity.

We denote the attention to visual modality as a1 and textual
modality as a2, satisfying a1 + a2 = 1. Then we define the formula
to calculate a1 and a2 through the following equations:

uv =W2
UVT

(
tanh(W2

V v̇) ◦ tanh(W2
U ǔ)
)
, (16)

ut =W2
UVT

(
tanh(W2

T ḣ) ◦ tanh(W2
U ǔ)
)
, (17)

a1 =
exp(uv )

exp(uv ) + exp(ut )
, (18)

a2 =
exp(ut )

exp(uv ) + exp(ut )
, (19)

where uv denotes the relevance score between user and visual
modality, and ut corresponds to user and textual modality. The
parameter matrices of inter-attention computation satisfyW2

UVT ∈

R1×512, W2
U ,W

2
V and W2

T ∈ R
512×512. Upon this, we can compute

the attended multi-modal embedding s as follows:

s = a1 · v̇ + a2 · ḣ. (20)



3.4 Learning for Popularity Prediction

To test whether the user embedding ǔ has additional influence
on popularity besides its major role of guiding the computation
of attention to multi-modalities, we adopt a shortcut connection
strategy [11] and calculate the updated multi-modal embedding as
follows:

s := s +W3
U ǔ, (21)

where W3
U ∈ R

512×512. After that, we utilize a simple 2-layer feed-
forward neural network to generate final popularity prediction,
which does not incur much model complexity and ensures the
capacity of nonlinear modeling. More specifically, we define the
computational formula as follows:

ŷ =W2
F ReLU(W1

F s + b
1
F ) + b

2, (22)

where ReLU represents the rectified linear unit, which is the nonlin-
ear activation function with the form, ReLU(x) = max(0, x). W1

F ∈

R512×512 and b1
F ∈ R

512 are the parameters of the first layer.W2
F ∈

R512 and b2 ∈ R are the second layer’s parameters. And ŷ indicates
the predicted popularity score we strive to generate.

We regard the learning of UHAN as a regression task. Mean
square error (MSE) is adopted as the optimization metric. It is
worth noting that the main focus of this paper is to consider how
to effectively learn representation from unstructured visual and
textual modalities for social image popularity prediction. Therefore,
we do not consider modeling some structured and hand-crafted fea-
tures such as social clues, user and sentiment features [5, 9, 16, 27].
However, our model could be easily extended to capture differ-
ent features. One simple way is to concatenate the representation
of features with the final multi-modal embedding s obtained by
our model. Actually, we find this way can further improve the
performance in our local test, which we do not introduce in the
experiments.

4 EXPERIMENT

In this section, we present the detailed experimental results and
some further analysis to answer the following essential research
questions:
Q1: What are the prediction results of the proposed UHAN com-

pared with other strong alternatives?
Q2: Does the joint considering of visual and textual modalities

indeed benefit the studied problem?
Q3: How does each component of UHAN contribute to the predic-

tion performance?
Keeping these questions in mind, we first provide the details

of experimental setups, including the dataset, evaluation metrics,
baselines, and implementation details. Afterwards, we answer the
three questions in sequence. Besides, we conduct qualitative analy-
sis by some case studies to show the intuitive sense of our proposed
UHAN.

4.1 Experimental Setup

4.1.1 Dataset. To our knowledge, there is no publicly available
social image dataset which contains both unstructured visual and
textual modalities for popularity prediction. We build such a dataset

by extending a publicly accessible dataset2 which is collected from
Flickr [40] and has only unstructured visual modality and some
structured features. For each social image in the original dataset,
we further crawl its corresponding title and introduction to form
the unstructured textual modality.

Given this extended dataset, we conduct the following prepro-
cessing procedures. We first remove all non-English characters,
tokenize each text, and convert each word to lowercase. We further
remove words with less than five occurrences in our dataset to keep
them statistically significant. Afterwards, we remove images with
its description less than five words, similar to the procedure adopt
in [22]. Finally, we obtain the dataset in our experiment and release
it along with the source code, as introduced in Section 1.

Overall, we have about 179K social images and the statistics of
the dataset is summarized in Table 1. To evaluate the performance
of UHAN and other adopted methods, we split the dataset in chrono-
logical order and regard the first 70% as our training dataset, which
is a little more consistent with real situation than just randomly
splitting. For the rest of the dataset, we randomly adopt one third
as the validation dataset to determine optimal parameters and two
thirds as the test dataset to report prediction performance. Note
that each user in the dataset has enough images.

Table 1: Basic statistics of the dataset.

Data Image# Word# User# Time Span
Flickr179K 179,686 70,170 128 2007-2013

4.1.2 Evaluation Metrics. As the studied problem belongs to
regression task, we adopt two standard metrics, i.e., mean square
errors (MSE) and mean absolute errors (MAE), which are widely
used in literature [24, 40]. Denote yi to be the ground truth for
record i and ŷi to be the prediction value, we can calculate MSE
and MAE as follows:

MSE =
1
nte

nte∑
i=1

(yi − ŷi )
2,

MAE =
1
nte

nte∑
i=1
|yi − ŷi |,

(23)

where nte is the size of test set. We adopt the popularity score yi
calculated by [40], which is given by:

yi = log2 (
ci
di
+ 1), (24)

where c is the total view count of the social image i and d represents
how many days it has been from the time it has been posted to the
specified end time.

4.1.3 Baselines. We compare our proposed UHAN with sev-
eral carefully selected alternative methods, including some strong
baselines based on multi-modal learning or attention mechanism.
• HisAve. The first baseline is the simplest one which regards
historical average popularity as prediction. It provides bench-
mark performance for other methods.

2https://github.com/social-media-prediction/MM17PredictionChallenge

https://github.com/social-media-prediction/MM17PredictionChallenge


• SVR. Based on various hand-crafted features, [16] adopts sup-
port vector regression (SVR) for social image popularity pre-
diction but without explicitly modeling unstructured textual
modality. Following this, we additionally incorporate textual
features such as TF-IDF and word embedding (GloVe [32])
while keeping basic visual features such as color and deep
learning based features. We have tried different combinations
of feature types and report the best results.
• DMF. It is a deep learning approach based on multi-modal
learning. We adopt a similar deep multi-modal fusion (DMF)
strategy widely used in literature [1, 26] to integrate visual rep-
resentation from VGG and textual representation from LSTM.
• DualAtt. The last strong baseline is inspired by a recent dual
attention network which involves simultaneous visual and
textual attentions [29]. We adapt the one-layered version of
the original one to our problem setting by utilizing user repre-
sentation to guide attention learning.

To ensure robust comparison, we run each model three times
and report their average performance.

4.1.4 Implementation Details. For textual modality, we set the
maximum length of image description to 50 by truncating longer
one. The dimension of word embedding and hidden state in LSTM
are both set to 512. For visual modality, as introduced in Section 3.2,
the input dimension to our model is 196×512. In addition, we set
the dimension of user embedding to 512 as well.

We implement our proposed UHAN based on the Keras library.
Adamwith default parameter setting [19] is adopted to optimize the
model, with the mini-batch size of 128. We terminate the learning
process with an early stopping strategy. More specifically, we test
model performance on the validation dataset every 64 batches.
When the best performance keeps unchanged for more than 20
iterations, the learning process will be stopped.

Table 2: Evaluation results of our proposed UHAN and other

adopted baselines in terms of MSE and MAE.

Methods MSE MAE
HisAve 4.070 1.575
SVR 3.193 1.385
DMF 3.004 1.339
DualAtt 2.412 1.185
UHAN (w/o u) 3.050 1.347
UHAN (w/o sc) 2.283 1.139
UHAN 2.246 1.130

4.2 Model Comparison (Q1)
Table 2 shows the performance comparison between UHAN and
the compared baselines in terms of MSE and MAE. First, we can
see HisAve performs much worse than all the other methods. It is
consistent with our expectation since it does not consider any useful
information about visual and textual modalities. By comparing DMF
and SVR, we find DMF performs better, showing that deep multi-
modal fusion based method is promising for this task. DualAtt
further improves DMN by a significant margin. It is intuitive that
DualAtt is a strong baseline since we adapt it to the studied problem

by performing user attention to both visual and textual modalities
separately. The comparison also reveals that considering attention
mechanism in multi-modal learning is beneficial.

We further verify the role of users in our proposed UHAN by
providing its two simplified versions, i.e., UHAN (w/o sc) which just
removes the shortcut connection and UHAN (w/o u) that completely
disregards user embedding. By comparing UHAN with UHAN (w/o
sc), we see slightly better improvements, which demonstrates that
the user embedding mainly utilized for attention computation can
also facilitate the prediction. By testing UHAN (w/o u), we can see
a notable performance drop compared with UHAN. This phenome-
non shows that proposing user guidance for attention learning is
indeed effective.

In summary, UHAN and its variant UHAN (w/o sc) achieve the
best results among all the methods, including gaining notable im-
provements over the strong baseline DualAtt. We could conclude
that the framework is effective and behaves well among all the
adopted methods, which can answer question Q1.

4.3 Modality Contribution (Q2)
We choose two representative methods (SVR (not deep) and UHA
(deep)) to test whether fusing visual and textual modalities indeed
promote popularity prediction. We denote visual modality as V
and textual modality as T for short, respectively. Thus “(w/o V)”
means removing visual modality for corresponding methods and it
is similar for “(w/o T)”.

Table 3: Performance test of unstructured modalities.

Methods MSE MAE
SVR (w/o V) 3.214 1.392
SVR (w/o T) 3.644 1.484
SVR 3.193 1.385
UHAN (w/o V) 2.321 1.151
UHAN (w/o T) 2.337 1.149
UHAN 2.246 1.130

Table 3 presents the results of modality test. We can see that for
both the baseline SVR and our model UHAN, they would suffer a
clear performance drop if either textual modality or visual modality
is not considered. Besides, we find that the methods of “(w/o V)”
behaves a little better than those of “(w/o T)”, which indicates that
it might be easy to acquire knowledge from textual modality than
visual modality since each words have more specific meanings
than pixels. Finally, the methods of jointly fusing multi-modalities
achieves the best results, reflecting that the two modalities might
complement each other for the studied problem. Based on the above
illustration, we can answer question Q2 that joint considering of
visual and textual modalities is indeed meaningful.

4.4 Ablation Study (Q3)
We consider three major components of UHAN to test their contri-
butions to final prediction. They are: 1) user-guided intra-attention
mechanism, 2) user-guided inter-attention mechanism, and 3) short-
cut connection of user embedding, just as introduced in Section 4.2.

Table 4 shows the corresponding results. Each of the middle three
methods removes one of the three major components. They behave
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Figure 4: Attention map visualization of two examples in our test dataset. Darker regions of images mean smaller attention

weights. The lighter the font color is, the smaller attention weight the word will get.

Table 4: Contribution of different components of UHAN.

Methods MSE MAE
UHAN (w/o intra+inter) 2.316 1.150
UHAN (w/o intra) 2.265 1.138
UHAN (w/o inter) 2.271 1.139
UHAN (w/o sc) 2.283 1.139
UHAN 2.246 1.130

nearly the same in MAE, but have different performance in terms
of MSE. By comparing with them, we find that UHAN outperforms
them in both metrics. We have conducted paired t-test to show the
significance of UHAN over the three variants in terms of MAE and
found the difference is significant. Moreover, we compare UHAN
with UHAN (w/o intra+inter) and the notable performance gap
further indicates the benefit of the proposed attention mechanism.
Based on these results, we see the positive contribution of each
component and can answer the question Q3.

4.5 Qualitative Analysis

In addition to the above quantitative analysis, we visualize some
attention maps generated by our model and some other methods
to qualitatively analyze the performance.
Different models for the same example: In order to intuitively
verify the advantages of our proposed UHAN, especially for the
user-guided hierarchical attention mechanism, we select two image
instances from our test dataset and show their attention maps for
the selected attention based models in Figure 4.

We can first see our model clearly gains good visual attention
maps in both two examples since it concentrates more on their key
elements, which is consistent with human cognition. For the variant
of our model, UHAN (w/o inter), its performance is slightly worse
than UHAN in the first example, but is much worse in the second.
This phenomenon indicates that the user-guided inter-attention
mechanism could indeed influence the attention map learned for
each modality. The attention maps generated by DualAtt seem to
be not good for both images.

For the textual modality, our model shows good attentions to
keywords in the descriptions. However, UHAN (w/o inter) presents
an unexpected attention to the preposition ‘in’ in the first example.
For the model of DualAtt, its major attention focuses on ‘muscadine
vines’ in the first example. Nevertheless, this phrase might not be
the one we want because it does not match with the key element in
the image. Besides, its attention distribution in the second example
seems to be a little chaotic. To sum up, this qualitative evaluation
empirically demonstrates the effectiveness of UHAN, especially for
its proposed attention mechanisms.
Ourmodel for different examples:According to the predictions
generated by our model, we select two examples with good pre-
diction results and one with bad results, and further show them in
Figure 5.

We can see clearly that the two examples in the top of the figure
have good results. For both of them, the corresponding attention
maps are shown in the left parts. Accordingly, we can easily focus
on the important elements in the images, which meets our intuition
that good attention results could lead better popularity prediction
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Figure 5: Case study for our model. The left column shows

the original examples while the right presents the atten-

tionmaps generated by our proposed UHAN and popularity

scores predicted by UHAN.

performance. Moreover, by considering the last example, we find
that there seems to be no obvious object or other important ele-
ments in the image. It is even not easy for ordinary users to judge
its quality and popularity. Actually, some background knowledge
about aesthetics might be necessary. As a result, it might be one of
the main reasons that lead to an obscure attention map and poor
popularity prediction result.
User personalization: In Figure 6, we select two users with dif-
ferent styles. “User A” usually posts images that contain people,
while “User B” rarely posts this type of images, but prefers some

Figure 6: Case study for personalization regarding attention

generation.

other objects. Therefore, we can see that attention maps generated
for the images of “User A” commonly focus on people. However,
for the last image of the user, it is mainly about a plane. As it does
not belong to his commonly related categories, the corresponding
attention map seems to be not very good as well. However, we can
see that the second image of “User B” is also about a plane. But this
time the generated attention map seems to be good to capture the
sketch of the plane. In short, users may have different degrees of
personalization, which influences attention computation and leads
personalized attention maps.

5 CONCLUSION

In this paper, we have studied the problem of multi-modal social im-
age popularity prediction. To consider representation learning from
multi-modalities for popularity prediction, which is often ignored
by relevant studies, we have proposed a user-guided hierarchical
attention network (UHAN) model. The major novelty of UHAN is
the proposed user-guided hierarchical attention mechanism that
can combine the representation learning of multi-modalities and
popularity prediction in an end-to-end learning framework. We
have built a large-scale multi-modal social image dataset by sim-
ply extending a publicly accessible dataset. The experiments have
demonstrated the rationality of our proposed UHAN and its good
performance compared with several other strong baselines.
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