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ABSTRACT

Groups play an essential role in many social websites which
promote users’ interactions and accelerate the diffusion of
information. Recommending groups that users are really
interested to join is significant for both users and social me-
dia. While traditional group recommendation problem has
been extensively studied, we focus on a new type of the
problem, i.e., event-based group recommendation. Unlike
the other forms of groups, users join this type of groups
mainly for participating offline events organized by group
members or inviting other users to attend events sponsored
by them. These characteristics determine that previously
proposed approaches for group recommendation cannot be
adapted to the new problem easily as they ignore the geo-
graphical influence and other explicit features of groups and
users.

In this paper, we propose a method called Pairwise Tag-
enhAnced and featuRe-based Matrix factorIzation for Group
recommendAtioN (PTARMIGAN), which considers location
features, social features, and implicit patterns simultane-
ously in a unified model. More specifically, we exploit ma-
trix factorization to model interactions between users and
groups. Meanwhile, we incorporate their profile information
into pairwise enhanced latent factors respectively. We also
utilize the linear model to capture explicit features. Due
to the reinforcement between explicit features and implicit
patterns, our approach can provide better group recommen-
dations. We conducted a comprehensive performance eval-
uation on real word data sets and the experimental results
demonstrate the effectiveness of our method.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Information Filtering, Retrieval
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1. INTRODUCTION
Recently, social groups, which are normally self-organized

communities, have emerged and become prevalent in many
online social media, such as Flickr1, Facebook2, and Douba-
n3, etc. It is common that users prefer to join a group in
which members share some common interest. Unlike direct
relationship between users, the inherent characteristics of
groups, e.g., focusing on some specific topics, determine that
the relations are clearer. Hence, they can promote informa-
tion diffusion and users’ interactions in groups.

However, it is non-trivial for ordinary users to discov-
er groups which they want to join for the following three
reasons. First, the volume and variety of groups are over-
whelming for users. Second, users often cannot express their
preference accurately when they use vertical search engine
to find groups. Moreover, users sometimes just want to be
told which groups they prefer to join. In order to solve these
problems, researchers proposed different methods for group
recommendation according to users’ personal needs [25, 27,
6]. Most of them are based on latent factor model with some
variations, which can convert each user and group into a low
dimensional representation and then calculate the degree of
closeness between them.

In this paper, we focus on a new type of problem about
recommending groups, i.e., personalized recommendation of
event-based groups to users. Event-based social networks,
which are mainly constituted by groups, have attracted more
and more research interest recently [14, 15]. Different from
groups mentioned before, event-based groups mainly include
offline events, which means members will meet each other
when they participate in events held by other members in
the same group. Intuitively, friend relationship plays a more
significant role in users’ decisions to join this kind of groups,
which needs to be addressed in this problem. Besides, the
nature of real-world events indicates location information
should be considered in the proposed methods as well. Yet,
previous research methods in group recommendation do not
exploit location features of users and groups.

Note that the authors of [15, 17] also used the term of
‘group recommendation’ to define their problems, however,
their tasks are to recommend some specific items to a group
of users, and their approaches concentrate on how to take all
users’ preferences in a group into account and automatical-
ly determine different decision influence weights of different
users from the same group. While our work is about per-

1http://www.flickr.com/groups/
2http://www.facebook.com/about/groups/
3http://www.douban.com/group/explore
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sonalized recommendation of event-based groups to a user,
which is totally different from the problems studied in [15,
17]. Thus, their methods cannot be applied to our problem.
For ease of representation, we define the notion of group
recommendation in this paper as recommending groups to
users to join but not recommending items to groups.

Based on the above analysis, we propose a new method for
personalized event-based group recommendation. We con-
sider both implicit and explicit factors that could influence
users’ decisions in our model. More specifically, we adopt
latent factor model to capture interactions between users
and groups like previous methods on group recommenda-
tion. Meanwhile, we incorporate their profile information
into pairwise enhanced latent factors. We also employ the
linear model to combine explicit features, including location
features and social features of users and groups which are
popularly used in location-based recommendation.

Our major contributions in this paper are summarized as
follows:

(1) We propose a novel problem called personalized event-
based group recommendation in a local city to help users find
the groups they want to join. While ranking all groups in all
cities for each user is low efficient, we exploit the localiza-
tion property of users and groups, and convert the problem
to recommending groups which are organized in the user-
s’ living cities, which is reasonable based on our analysis in
Section 3.1. To our best knowledge, we are the first to study
this problem.

(2) To take the advantage of the previous methods in tra-
ditional group recommendation problem and the location
properties of event-based groups and users, we propose to
integrate the latent factor model with explicit features em-
ployed in location-based recommendation.

(3) We have conducted experiments on real data sets and
the results show that our hybrid method is effective, and is
better than several separate methods.

2. RELATED WORK
In this section, we briefly discuss three lines of research

related to recommending event-based groups: (a) group rec-
ommendation; (b) location-based recommendation; and (c)
latent factor model.

Group Recommendation. In this paper, group recom-
mendation refers to automatically recommend groups for
users which they are interest to join [25, 27, 23, 5, 6]. Previ-
ous works mostly exploit latent factor models to capture the
linkage information between users and groups, which could
be regarded as a standard solution to group recommendation
problem. Moreover, Zheng et al. [27] adopted tensor factor-
ization to model the ternary relations among users, groups,
and tags jointly in Flickr group recommendation. Chen
et al. [6] extended the basic Probabilistic Latent Seman-
tic Analysis(PLSA) model [10] to generate group content
information and social relation between users and groups si-
multaneously. Wang et al. [25] considered both the content
of image and link structure among users and groups in a
joint topic model. Most of these works exploit additional
information to benefit group recommendation, such as tags,
content of images, etc. However, as these items or their mu-
tual relations do not exist in our problem setting and the
above models are specially designed for these information,
these models cannot be directly utilized in our work.

Our event-based group recommendation problem is dif-
ferent from the traditional group recommendation problem,
since the location information plays an important role in
users’ decisions about joining groups, and previous methods
cannot be adapted to incorporate this information easily.
Moreover, users’ friendships in the real world are significant
for this problem, which need to be explicitly modeled in the
proposed approach.

Location-based Recommendation. Recommendations
in location-based social network have been extensively stud-
ied in recent years [26, 7, 28, 19, 22]. Among them, our work
is most inspired by two recent studies on extended matrix
factorization [7] and supervised link prediction [22]. Cheng
et al. [7] combined multi-center Gaussian model with matrix
factorization for personalized point-of-interest (POI) recom-
mendation. They drew an assumption that users’ check in
behaviors obey Gaussian distribution around some centers.
However, this assumption is not reasonable in our prob-
lem setting since there are not enough location records for
each user (many users have only several location records as
they only participate in a few events) to ensure a Gaussian
mixture distribution like check-in data they used. Scellato
et al. [22] exploited place-based features in link prediction
based on supervised learning methods. They summarized
three types of features, i.e., place features, social features,
and global features. Inspired by their work, we adopt some
variations of those features in our work and integrate them
with the latent factor model.

Latent Factor Model. There are two main types of latent
factor models widely used in recommendation: matrix fac-
torization [21, 12, 16] and topic model [2, 10, 8]. In [21,
20], a probabilistic formulation of matrix factorization has
been proposed, which has spawned a large body of research.
Koren at al. [12] did a series of work based on matrix factor-
ization by considering time factor, bias influence factor, etc.
In [1], Aizenberg et al. incorporated artist-enhanced latent
factor into matrix factorization to help alleviate the sparsity
problem in recommending music. On the other hand, topic
model is similar with matrix factorization and in some situ-
ations, they can be proved equivalent [8]. Recently, Wang
et.al [24] combined topic model and matrix factorization into
a unified model for recommending scientific articles, which
is a promising direction.

In this work, we extend basic matrix factorization model
and propose a pairwise tag-enhanced latent factor model to
incorporate profile information of users and groups.

3. PRELIMINARIES

3.1 Data Analysis
In this work, we take Meetup 4, an online social medi-

a site which contains various kinds of groups, as a case s-
tudy. In Meetup, users can create groups, launch events in
groups to attract other users to join. Or they can join other
groups, participate in events organized by group members.
Although these events belong to their groups uniquely, it is
not necessary for users to be group members to join their
events. Particularly, users can express their attitudes to-
wards to the events by RSVP (“yes”, “no” or “maybe”). Be-
sides, users can also share some information with other users,
like personal profile, comments, etc.

4http://www.meetup.com/
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Figure 1: The Cumulative Probability Distribution
of Distance Between Users and Their Joined Events

Essentially, users join this type of groups for attending
some face-to-face events. Thus, the distance between users
and target events is a fundamental factor that influences
whether users will join groups. Via the interface of Meet-
up web service, users can set the range of distance from
themselves to groups they will choose. Brown et al. [3] also
suggested that geographical closeness could influence the for-
mation of online communities. For further analysis, we show
the cumulative probability distribution of distance between
locations of users and events they have joined in Figure 1. As
we can see, more than 83.5% of events are within 20 miles far
from users. This is similar with the conclusions from Liu et
al. [14]. They also stated the scope of locations of events that
users joined in the event-based social networks is narrower
than locations of check-ins in location-based social network.
Usually, it happens when an event and a user are located in
the same city. Besides, considering groups of all cities for
recommendation is low efficient in practice. Consequently, it
is more reasonable to recommend groups which usually hold
events in the city where users live. In this paper, we call this
problem personalized recommending event-based groups in
the local city users live in. For consistent representation, we
also use event-based group recommendation to denote it.

3.2 Problem Formulation
For the problem of event-based group recommendation,

we have five types of entities: {U(user), G(group), T (tag),
L(location), and E(event)}. Given a city i, let Ui={u1, u2, ...
, un} and Gi={g1, g2, ..., gm} denote the set of all users and
groups in the city i, respectively. For each user u ∈ U , it has
a set of tags Tu to describe its preference, a unique location
Lu to indicate its address, and records of events Eu and
groups Gu it has joined. Similarly, for each group g ∈ G, it
has also a set of tags Tg, a set of events Eg organized by its
members, and a member list Ug . Besides, each event e ∈ Eg

also has a location to specify where it is held. The relations
between these entities are shown in Figure 2.

Formally, the problem is defined to rank every group g
belonging to the city i for a given user u who lives in the
same city, according to the dyadic rating r(u, g) of user u
to group g, which indicates the user’s preference to group
g. Naturally, predicting r(u, g) is the central task to be ad-
dressed here. Because users may join groups for different
reasons, we should exploit the existing diverse relations be-
tween entities mentioned above to build an effective model
for event-based group recommendation.

3.3 Motivating Discussion
Latent factor model is the state-of-the-art method for

group recommendation problem. However, we argue that
some additional key points should also be considered to solve

Figure 2: Overview of Entity Relations in Event-
based Group Recommendation Problem

the new problem of event-based group recommendation. In
accordance with the unique characteristics of event-based
groups, we make two important assumptions here.

Assumption 1. Users’ friendships play a major role in

users’ decisions to join groups.

This is a general assumption used in many applications of
recommender system. However, we address it here because
in our problem, this phenomenon is stronger. Unlike tra-
ditional online groups in which all the interactions between
members only take place in a virtual network, event-based
groups contain many real-world face-to-face events, which
means users will meet each other when they attend the same
event. Intuitively, users are more willing to meet people they
are already familiar with in the real world.

Assumption 2. Users prefer to join groups nearby.

We have shown that users prefer to join events near their
homes in Figure 1. As groups have no corresponding loca-
tions, we treat group members’ locations and events’ loca-
tions as an alternative choice. Formally, we assume that a
group is near a user when the members in the group are
near the user, or the events are held near the user. Now
consider a common case that a user wants to attend a group
which holds many outdoor sports like basketball game. If
two groups both meet the requirements of the user but are
only different in terms of distance from him, then it is more
likely the user will join a nearer group due to its convenience.

In this work, we construct explicit features for predict-
ing the dyadic rating r(u, g) mainly based on the above two
assumptions. Specifically, social features are extracted ac-
cording to the first assumption, while location features are
generated following the second assumption.

3.4 Model Framework
In order to take advantage of the latent factor model in-

troduced in Section 2, we focus on one type of latent factor
model, i.e., matrix factorization. In the setting of matrix
factorization, the fundamental idea is to embody each user
u and group g with low-dimension latent factors pu and pg.
Then the dyadic rating r(u, g) of user u to group g is usually
approximated according to the following equation,

r̂
m(u, g) = pT

upg (1)

where r̂m(u, g) denotes the rating prediction between u and
g which is calculated by the method of matrix factorization.

The basic form of matrix factorization method cannot cap-
ture explicit features. However, based on our previous as-
sumptions and analysis, explicit features play an essential
role in event-based group recommendation problem. Thus,
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we adopt the linear model, which is widely used and effec-
tive especially when the feature space is not complex. Its
basic form is shown below,

r̂
l(u, g) = wTx (2)

where x is the explicit feature vector and w is the coefficient
vector of the linear model corresponding to each feature.
Besides, r̂l(u, g) indicates that we adopt the linear model to
get the rating prediction.

To tackle the group recommendation problem more effec-
tively, we want to capture both implicit patterns and explicit
features simultaneously. Based on this intuition, we linearly
combine these methods to model both of them.

r̂(u, g) = r̂
m(u, g) + r̂

l(u, g) (3)

4. EVENT-BASED GROUP RECOMMEND-

ATION MODELING
In this section, we first introduce the explicit features in

Section 4.1 and then describe the basic matrix factoriza-
tion model in Section 4.2. We extend matrix factorization
by proposing a pairwise tag-enhanced latent factor model in
Section 4.3. Finally, we discuss two strategies for integrat-
ing matrix factorization with explicit features in Section 4.4.

4.1 Linear Model
The basic form of the linear model is shown in Equation 2.

There exist more complex models which adopt complicat-
ed approaches to combine features. For example, support
vector machine (SVM) can use kernel trick to nonlinearly
transform features and then combine them. However, when
the number of features is small, and each feature has a clear
category indication, just like features built in this work, the
linear model is effective enough while preserving simplicity.

Based on the two assumptions made in Section 3.3, we
divide features into two categories: (1) location features;
and (2) social features. We will discuss both types of the
features in the following subsections in detail.

4.1.1 Location features

Location features reveal the essential distinction between
event-based group recommendation and other traditional
group recommendation problems.

Overlap ratio of common locations. Co-location type
of features focus on the intersection part of locations both
users and groups are linked to. Let L(u) denote the set of
locations of events user u has participated and L(g) denote
the set of locations of events organized by the members of
group g. If u and g have many common locations, u is more
likely to join g. We use Jaccard similarity to measure the
overlap ratio of two location sets, i.e,

overlap location(u, g) =
|L(u) ∩ L(g)|
|L(u) ∪ L(g)| (4)

where |L(u) ∩ L(g)|=|L(u)|+ |L(g)| − |L(u) ∪ L(g)|.
Number of common locations. As a complement to the
feature above, we use the size of the intersection set instead
of overlap ratio, i.e., |L(u) ∩ L(g)|. If the size is large, user
u will be more likely to join group g.

Minimum distance of users from group members.
This feature measures affinity between users and groups
from the perspective of spatial distance. If user u is near

from a group member u′ in group g, it is possible they will
create links with each other and that in turn increases the
possibility of u joining g.

user min dis(u, g) = min
u′∈U(g)

dis(u, u′) (5)

where dis(u, u′) denotes the distance between user u and u′.
According to the longitude and latitude information, we use
the Google Geocoding API5 to calculate the distance.

Mean distance of users from group members. This
feature is similar to the feature above except that we use
mean distance instead of minimum distance to reflect the
distance condition of user u from the whole group members.
Thus, it is more robust which can overcome the impact of
noisy users.

user mean dis(u, g) =

∑
u′∈U(g) dis(u, u

′)

|U(g)| (6)

where |U(g)| denotes the number of members in group g.

Minimum distance of users from group events. This
feature directly measures the distance of user u from event
e that pertains to group g. When the distance is smaller, u
will be more likely to join e. That will further increase the
possibility of u joining g.

event min dis(u, g) = min
e∈E(g)

dis(u, e) (7)

where dis(u, e) denotes the distance between user u and
event e.

Mean distance of users from group events. Likewise,
we employ average distance to provide a robust feature for
measuring the spatial affinity of user u and group g.

event mean dis(u, g) =

∑
e∈E(g) dis(u, e)

|E(g)| (8)

where |E(g)| denotes the number of events belonging to g.

4.1.2 Social features

Social influence mainly refers to the influence of users’
friends on them. Here we assume users u and u′ are friends
if they are online friends which means they have both joined
at least one group or are offline friends which implies they
have both participated in at least one common event.

Overlap ratio of common users. This feature calculates
the Jaccard similarity between group g’s member set and
friend set of user u. We use F (u) to denote the friend list of
user u and U(g) to represent the members of group g.

overlap user(u, g) =
|F (u) ∩ U(g)|
|F (u) ∪ U(g)| (9)

Number of common users. Similarly, we use the size of
intersection set instead of overlap ratio, i.e., |F (u) ∩ U(g)|.
This feature supplements the previous feature when the group
is very large so that all the overlap ratios are small.

Although social features also exploit the interaction records
between users and groups like matrix factorization below,
they are different because social features concentrate on direct
relations while matrix factorization captures indirect rela-
tions through low dimensional representation.

5https://developers.google.com/maps/documentation/geo-
coding/
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4.2 Matrix Factorization
The standard form of matrix factorization with bias terms

is based on the following equation mentioned in [12],

r̂
m
bias(u, g) = µ+ bu + bg + pT

upg (10)

The average rating µ for user u plays a minor role because
event-based group recommendation is a dyadic rating pre-
diction problem. Moreover, user bias of u, bu, is mainly cap-
tured by explicit features discussed before. Thus we focus on
group bias here. Intuitively, more active groups will attract
more users to join and this property is independent of users.
In order to quantify the degree of activeness of groups, we
consider two quantitative metrics here: (1) current number
of members in a group; and (2) number of events organized
by group members. We also adopt the linear model to de-
termine the relative weights of these two features. Thus, we
get the group bias bg = wT

g xg, where xg denotes the above
two metrics and wg represents the corresponding coefficient
vector. We can consider the group bias together with social
features and location features in a unified model.

4.3 Pairwise Tag-enhanced Matrix Factoriza-
tion

Generally, users and groups both have profiles reflecting
their preference. In this work, we only consider using tags
because tags are common in many social networks, ensur-
ing our method can be adapted to other situations. Simply
matching tags based on string similarity cannot capture the
semantic relatedness between tags. Thus, we also convert
tags into low dimensional vectors and then multiply them
to determine their relatedness. This is a powerful method
for calculating words’ semantic relatedness [9].

Zheng et al. [27] also considered using tags in group recom-
mendation and adopted tensor factorization to incorporate
them. More specifically, given tags users have used in label-
ing the pictures in groups, tensor factorization can model
the ternary relationship 〈u, g, t〉. However, we cannot di-
rectly adapt it to our problem because tags are separately
labeled by groups and users for themselves, which leads to
two pairwise relations instead of one ternary relation.

For each user u and group g, they both have their own tags
Tu and Tg, respectively. Let vut denote the latent factor of
tag t for user u, and similarly vgt for group g. Then we
can get vu = 1√

|Tu|

∑
t∈Tu

vut and vg = 1√
|Tg |

∑
t∈Tg

vgt,

which can be regarded as explicit profile information of users
and groups. |Tu| and |Tg| are the number of tags of u and
g, respectively. For any user or group which has no tags, we
add two additional tags for them.

We incorporate pairwise tag-enhanced latent factor into
matrix factorization model through directly supplementing
user and group latent factors separately and then multiply
the two items. The equation is defined as follows,

r̂
m
pair(u, g) = (pu + vu)

T
(pg + vg)

=
(
pu +

1
√

|Tu|

∑

t∈Tu

vut

)T(
pg +

1
√

|Tg|

∑

t∈Tg

vgt

) (11)

The above equation contains a hidden assumption that
dimensions of tags and users, tags and groups should be
equivalent. However, tags’ optimal number of dimensions
may be different from users’ and groups’. In order to be
more generic, we introduce a transform matrix, M. Assume
the dimension of latent variables of users and groups is m

and the dimension of tags is n, then M is a m × n matrix.
Then we get the following formula,

r̂
m
pair(u, g) =

(
pu+

M
√

|Tu|

∑

t∈Tu

vut

)T(
pg +

M
√

|Tg|

∑

t∈Tg

vgt

)
(12)

When m equals n, and matrix M is constrained to be a
diagonal matrix with all diagonal elements equal to 1, the
above two equations are equivalent. Thus, Equation 11 can
be regarded as a special case of Equation 12. Note that
we only need to specify the dimension of matrix M, all the
elements of M can be learned automatically.

4.4 Model Combination
Now we integrate pairwise tag-enhanced matrix factoriza-

tion with the linear model into a unified model, just as the
extension of the basic framework introduced in Section 3.4.
The detailed representation is shown below,

r̂(u, g) = r̂
m
pair(u, g) + r̂

l
(u, g) + bg

=
(
pu +

M
√

|Tu|

∑

t∈Tu

vut

)T(
pg +

M
√

|Tg|

∑

t∈Tg

vgt

)

+ w
T
ugxug + w

T
g xg

(13)

We call this proposed model Pairwise Tag-enhAnced and
featuRe-based Matrix factorIzation for Group recommendA-
tioN (PTARMIGAN). In practice, we have two strategies to
use training methods to learn the optimal model parameters:

• We train pairwise tag-enhanced matrix factorization
and the linear model separately to get the optimal pa-
rameters for each of them. Then we combine them
with different relative weights which can be determined
by a grid search method.

r̂(u, g) = α∗ r̂mpair(u, g)+ (1−α)∗
(
r̂
l(u, g)+ bg

)
(14)

where α is the fusion parameter to control the contri-
bution of the two parts.

• We directly optimize Equation 13 and get all the op-
timal parameters simultaneously.

While the intrinsic characteristics of the two strategies are
the same, we conclude two major differences between them:
(1) the second strategy is sensitive to the value of the explicit
features, especially when they have very large values; and (2)
the first strategy needs an additional grid search method to
determine the hybrid parameters. Empirically, we find that
the first strategy gets a little better result in this problem,
so we choose this strategy in the following.

5. MODEL TRAINING

5.1 Optimization Criterion
The central task in event-based group recommendation is

to predict the dyadic rating r̂(u, g) and make the groups with
higher ratings rank higher. This is relevant to the ranking
task in information retrieval, where the target is to rank
relevant documents at top positions.

In the scenarios of information retrieval, learning to rank
methods have become the state-of-the-art ranking frame-
work [13]. Typically, learning to rank methods have been
classified into three categories: pointwise approach, pair-
wise approach, and listwise approach. On the one hand, the
pointwise approach cannot capture the relative order be-
tween training instances in the ranking list, which is signif-
icant for ranking learning. On the other hand, the training
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consumption of most listwise approaches is high compared
with its improvement over the other two approaches. There-
fore, we prefer to adopt the pairwise approach, which is a
tradeoff between the pointwise and listwise approach. Fi-
nally, we choose the Bayesian Personalized Ranking (BPR)
optimization criterion [18] and adapt it to our problem.

For event-based group recommendation problem, we re-
gard the groups user u have joined as the positive group set,
denoted by PIu, while the other groups u has not joined in
the same city as the negative group set, expressed as NIu.
Then the best ranking result for user u is that all groups
joined by him should rank higher than other groups, which
satisfies the following inequality,

r̂(u, gpu) > r̂(u, gnu) g
p
u ∈ PIu, g

n
u ∈ NIu,∀u ∈ U.

The above inequality is relevant to the value of Area Un-
der the ROC Curve (AUC) which is widely used in classi-
fication problem. Usually the larger the value of AUC is,
the more the positive groups rank higher than the negative
groups. When there are total m users, the AUC value can
be calculated as follows,

AUC =

∑m
u=1

∑
g
p
u∈PIu

∑
gnu∈NIu

I
(
r̂(u, gp

u) − r̂(u, gn
u )

)

∑
m
u=1 |PIu||NIu|

(15)

where I(.) is an indicator function that is equal to 1 if
r̂(u, gpu) > r̂(u, gnu) and equals 0 otherwise.

Aiming for maximizing the AUC value, many works [4,
18] utilize sigmoid function, which has a form of σ(x) =

1
1+e−x , to approximate the indicator function I(.) so that
the objective function is derivable. Based on this trick, we
can get the final target optimization function, commonly
represented as a log form below,

max

m∑

u=1

∑

g
p
u∈PIu

∑

gnu∈NIu

ln
( 1

1 + e−(r̂(u,g
p
u)−r̂(u,gnu ))

)
+ regularization

(16)

where the regularization terms are used to avoid overfitting
in the learning process. When the target is to maximize
the objective function, the regularization terms should take
negative values. In this work, we adopt L2-regularization for
model parameters Θ, i.e., pu, pg, vut, vgt, wug, wg, M.

5.2 Parameter Learning
For both parts of the right side of Equation 14, their pa-

rameters are learned by maximizing Equation 16 using s-
tochastic gradient descent (SGD) algorithm. SGD benefits
many machine learning procedures by its fast speed to con-
verge to global or local optimums and good scalability to
large data sets. The main process of SGD is to randomly
scan all training instances and iteratively update parame-
ters. Specifically, for each training instance, we calculate its
derivative and update the corresponding parameters Θ by
moving along the ascending gradient direction as below,

Θ← Θ+ η ∗ ∂Obj(Θ)

∂Θ
(17)

where Obj(.) denotes the objective function.
Given a training instance pair(u, gpu, g

n
u), we can update

the related parameters by its gradient based on Equation 16,

∂Obj(Θ)

∂Θ
= ǫ ∗ ∂σ

(
difpn

u

)

∂Θ
− λΘ (18)

where difpn
u = r̂(u, gpu) − r̂(u, gnu) and ǫ = 1 − σ(difpn

u ).
Besides, we use λ to denote the regularization parameters.

The partial derivatives of Obj(.) have the same ǫ, but d-

ifferent
∂σ(difpn

u )

∂Θ
. According to Equation 13 and Equation

14, the detailed gradients of the corresponding latent vari-
ables in matrix factorization can be derived as follows,
∂σ(difpn

u )

∂pu

=
(
p

p
g +

M
√

|Tp
g |

∑

t∈Tg

v
p
gt

)
−

(
p

n
g +

M
√

|Tn
g |

∑

t∈Tg

v
n
gt

)
(19)

∂σ(difpn
u )

∂p
p
g

=
(
pu +

M
√

|Tu|

∑

t∈Tu

vut

)
(20)

∂σ(difpn
u )

∂v
p
gt

=
MT

√
|Tp

g |

(
pu +

M
√

|Tu|

∑

t∈Tu

vut

)
(21)

We only list a part of gradients of the latent variables for
saving space. However, all the other latent variables have
similar gradient formulas. The gradients for matrix M can
be induced as below,
∂σ(difpn

u )

∂M[i,j]

=
( 1
√

|Tu|

∑

t∈Tu

vut,[j]

)(
p
p

g,[i]
+

M[i,∗]√
|Tp

g |

∑

t∈T
p
g

v
p
gt

)

+
( 1
√

|Tp
g |

∑

t∈T
p
g

v
p

gt,[j]

)(
pu,[i] +

M[i,∗]√
|Tu|

∑

t∈Tu

vut

)

−
( 1
√

|Tu|

∑

t∈Tu

vut,[j]

)(
p

n
g,[i] +

M[i,∗]√
|Tn

g |

∑

t∈Tn
g

v
n
gt

)

−
( 1
√

|Tn
g |

∑

t∈Tn
g

v
n
gt,[j]

)(
pu,[i] +

M[i,∗]√
|Tu|

∑

t∈Tu

vut

)

(22)

whereM[i,j] denotes the [i, j]th element inM, M[i,∗] denotes
the ith row in M, and vut,[j] denotes the jth element in the
latent vector. For explicit features in the linear model, the
gradients of their coefficients are shown as follows,

∂σ(difpn
u )

∂w
= xp − xn (23)

Finally, each model parameter should add one regulariza-
tion term as Equation 18 shows. Since tags (Vut, V

p
gt, V

n
gt)

may have overlaps, we should add the regularization terms
until the end of each iteration.

The learning process continues until one of the following
two termination conditions is satisfied: (1) the value of AUC
on training data set remains stable in consecutive iterations;
and (2) the maximum number of iterations is reached. Gen-
erally, this number can be set empirically.

6. EXPERIMENTAL STUDY

6.1 Datasets Allocation
As stated in Section 3.1, we address the problem of event-

based group recommendation for users in the same city. We
selected New York City(NYC)6 and Los Angeles(LA)7 to
analyze because they are among the largest cities in USA
and hence have more users and groups than many other
cities. Similarly, [19, 11] also choose the two cities in their
experiments on location-based recommendation. We got the
data set for the two cities in Meetup by extracting them from
the data set published by [14].

Since all locations of users and events are represented by
longitude and latitude, without explicitly specifying their c-
ities. We first got users within a distance range from the
centers of the two cities. Then starting from these users, we
extracted groups that hold events within a distance range

6http://en.wikipedia.org/wiki/New York City
7http://en.wikipedia.org/wiki/Los Angeles
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from these users. Besides, we extracted their corresponding
tags, events, and locations. To remove noisy data and guar-
antee the reliability of the experimental results, we further
selected users who have joined at least 5 groups and groups
which have at least 5 members. We also regarded the users
who have joined most of the groups in the city as noisy users
and removed them. For tags, we split long tag string and
retained tags frequently used by users and groups. Finally,
we obtained the experimental datasets. The details of the
datasets are shown in Table 1.

City User Group Tag Event Location
NYC 5001 2494 2137 95339 16963
LA 10944 2783 3421 120310 21389

Table 1: Statistics of Event-based Group Data

As we adopt the BPR framework for learning parameters,
we need to construct training data including a positive and
a negative group in each training instance. However, if we
use all groups (except those user u has joined) in a city as
negative groups to build training pairs for u, then the total
number of pairs for all users is huge which will lead to a very
slow training scheme. For simplicity, we adopted an alter-
native strategy by randomly sampling 10 groups users have
not joined for each positive group to constitute the training
pairs. Therefore, the ratio of the number of positive groups
to negative groups is 1:10. For both NYC and LA data sets,
we randomly split them with 70% into the training sets, 10%
into the validation sets, and 20% into the test sets. Because
the test data sets are composed of group pairs, we call them
pair test sets. These test sets are mainly employed for
comparing the performance of different methods.

In order to evaluate the effectiveness of event-based group
recommendation in a real scenario, i.e., using all groups in
a city as candidates, we first randomly sampled 1000 users
as test users for both cities. Then for each user, we removed
the groups he has joined and also used in the training and
validation sets. For the remaining groups he has joined, we
regard them as the target groups and hope the proposed
method to give them higher ratings than other remaining
groups in the city. Finally, we get the two cities’ test sets
which we call list test sets because the test results are
evaluated on the group ranking lists.

6.2 Evaluation Measures
To evaluate the group recommendation results, we adopt

three standard evaluation metrics: AUC, P@k (Precision at
Position k), and MAP (Mean Average Precision) .

AUC measures the overall results of classification. It is
suitable for highly imbalanced data set, as in our case where
the negative groups constitute a high proportion. In this
work, we use AUC in the pair test sets to measure the results.

P@k and MAP are mainly used in ranking problems. For
each user u, suppose positive groups correspond to the cat-
egory CT , then average precision (AP) is defined as follows,

AP =

∑n

k=1 P@k × I
(
π(k, L(u)) = CT

)

|Gu|
(24)

where n is the number of groups, π(i, L(u)) denotes the cat-
egory of the group at position i in the ranking list L(u) and
Gu represents the groups joined by u in the test sets. Fi-
nally, we can obtain MAP by averaging AP for all users. In
this paper, we use P@k and MAP in the list test sets.

6.3 Baseline Methods
Since the proposed method, PTARMIGAN, is a combina-

tion of the latent factor model and the linear model with
explicit features, we focus on demonstrating that the hybrid
method is suitable for the new problem of event-based group
recommendation and it is better than any single method.
Besides, we want to verify the effectiveness of each type of
features. With these goals in mind, the baselines we adopt
in this work are listed as follows,

• Linear model with group activeness features
(LiGF): This method only considers group activeness
features. Therefore, it ignores personal preference of
users.
• Linear model with location features (LiPF): This

method corresponds to Assumption 1. It reflects the
affinity between users and groups from the spatial per-
spective.
• Linear model with social features (LiSF): This

method corresponds to Assumption 2. It is used to
measure how users are influenced by their friends when
deciding whether to join groups.
• Linear model with all explicit features (LiAF):

This method integrates all explicit features we used.
It can be viewed as a special case of our proposed
method when only considering explicit features. Com-
pared with previous three baselines, it can be used to
verify the advantage of integrating all types of features.
• Matrix factorization (MF): It is a fundamental

type of latent factor model for recommending groups
discussed in Section 4.2. Many methods for recom-
mending groups are variants of this model. However,
as stated in Section 2, these methods use additional in-
formation like content of images and cannot be directly
utilized in our problem. Thus, the basic latent factor
models are used here as baselines to show the result-
s of recommending event-based groups. Besides MF,
we also tried other two standard latent factor mod-
els, PLSA and LDA, in our problem. However, MF
with the BPR learning framework outperforms these
two methods. Due to space limitation, we only analyze
the results of MF in our experimental study.
• Pairwise tag-enhanced matrix factorization (P-

TMF): This method is an extension of matrix factor-
ization by incorporating pairwise tag latent factor to
enhance factors of users and groups. It can be regarded
as considering additional content information in group
recommendation.

6.4 Parameter Setup

Learning rate and regularization parameters. Learn-
ing rate controls the speed of model training. However, it
may not be able to converge if it is set too large. In this
work, the learning rate is set to 0.01 for matrix factorization
and 10−4 for the linear model. On the other hand, regu-
larization parameters are empirically set to 0.1 for matrix
factorization and 10−3 for the linear model.

Relative weight α. α is the fusion coefficient of Equa-
tion 14. We tune α by evaluating how AUC changes in
validation sets. As the results shown in Figure 3, we get
stable and better performance when α ∈ [0.4, 0.9]. Tak-
ing the results of P@k and MAP into consideration, we set
α = 0.85.
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Algorithm LiGF LiPF LiSF LiAF MF PTMF PTARMIGAN

NYC 0.716 0.740 0.801 0.867 0.872 0.874 0.885
LA 0.793 0.805 0.861 0.894 0.899 0.901 0.912

Table 2: AUC of pair test set

Dimension of latent factors. In addition to the above
parameters, we also conducted sensitivity analysis in terms
of the dimensionality of the latent factors. As we varied the
number of dimensions, we found that it is not very sensitive.
Empirically, we set the number of dimensions to be 20 for
the latent factors in our model .
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Figure 3: The Effect of Weight α

6.5 Experimental Results
(A) Results on Pair Test Sets. We begin with reporting
the results on pair test sets. We adopt AUC metric because
it can reveal the overall results of all methods under the
adopted pairwise learning framework, i.e., BPR .

All the results are shown in Table 2. Now we first dis-
cuss the contribution of different types of explicit features
by comparing LiGF, LiPF, and LiSF. Among the three base-
lines, the performance of LiGF is worse than the other two
methods because it ignores personal factors which play a
significant role in personalized recommendation. However,
the results also reflect users have a tendency to join active
groups. For LiPF and LiSF, the latter performs better than
the former method. It corresponds to our intuition that us-
er’s friends have a major influence on user’s decisions to join
groups, especially for face-to-face events. Moreover, we find
the combination of these explicit features obtains better re-
sults, with 8.25% improvement in NYC and 3.71% improve-
ment in LA pair test sets over the best sub-method. This
demonstrates different types of features can be complemen-
tary to each other from different aspects of the problem.

Then we analyze the difference between MF and PTMF.
As we discussed in Section 4.3, PTMF is an extension of M-
F by considering additional tag information. As the results
show, PTMF behaves a little better than MF. This verifies
incorporating profile information of users and groups indeed
somewhat captures their characteristic and preference. In
fact, when a user and a group have similar profile informa-
tion, it is reasonable they are more likely to create links.
However, more than 20% users in both of our pair data sets
have no tags which may lead to that the improvements here
are not so obvious as we expected.

Finally, we compare the proposed method, PTARMIGAN,
with the methods, LiAF and MF. By fusing explicit features
and latent factors into a unified model, AUC of PTARMI-
GAN is further improved over the two strong baselines in
both test sets. This demonstrates that the combination
of matrix factorization and explicit features is effective for
event-based group recommendation. We notice that AUC of
all methods on LA pair test set are superior to the results on

NYC pair test set. This can be explained by the fact that
NYC data set is sparser than LA data set.

(B) Results on List Test Sets. We concentrate on the
top-3 precision of recommendation results when all groups
in a city are considered because of the following reasons.
First, in the test data, many users have only one positive
instance. Thus, it is fair to compare all methods on the top
recommendation results. Second, in a real recommendation
scenario, most users only join a few groups, and users tend to
only focus on the top recommendation results while ignoring
the rest. We also utilize MAP to measure the overall results
of recommendation.

Since LiAF always performs better than the methods us-
ing incomplete explicit features, we only use it among the
feature-based methods for comparison in this test. As Fig-
ure 4 shows, PTARMIGAN achieves the best results in P@1,
P@3 and MAP. For the top-1 precision, it achieves 7.25%
and 8.11% relative improvements in NYC and LA list test
sets respectively over the second best corresponding results.
It also achieves the best MAP among all methods. Thus, it
verifies that the proposed method can indeed achieve better
group recommendation results.

An interesting phenomenon we found is that LiAF per-
forms a little better than both MF and PTMF in this case,
which is contrary to the results on the pair test sets. This
may be caused by the following two reasons: (1) explicit
features, especially social and place features are significant
in the problem of event-based group recommendation; and
(2) pairwise ranking learning strategy may lose some accu-
racy when the number of relevant documents is much small-
er than irrelevant documents, just like group ranking here,
which can also be regarded as an extremely skewed binary
classification problem.

To sum up, our proposed method, PTARMIGAN, achieves
the best results among the above methods. Now, we further
discuss the complexity of our method and the cold start
problem in recommendation.

Parameter complexity. The number of parameters in the
linear model is determined by the number of types of fea-
tures, which is expressed as L. In the part of the latent fac-
tor model, the complexity of the parameters is O(KuiNu +
KuiNi +KtNt +KuiKt), where Kui and Kt correspond to
the dimension of users/items and tags respectively, Nu de-
notes the number of users and it is similar for Ni and Nt.
Thus, the parameter complexity of our hybrid method is
O(KuiNu+KuiNi+KtNt+KKt+L), which grows linearly
with the size of data.

Time complexity. Suppose we need R1 and R2 iterations
to train the two parts of our model respectively and c is the
time cost of updating one parameter, then the training time
complexity is O(cR1 ∗ (KuiNu + KuiNi + KtNt + KKt) +
cR2 ∗L). Usually R1, R2, and c are small in practice. Thus,
the training time also grows linearly with the size of data.

Cold start problem. Cold start problem is the main chal-
lenge in recommendation. For both cold start users and
groups, we have none of their interaction history and the
basic latent factor model cannot be applied to this situa-
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Figure 4: Results of compared methods on list test set

tion. While we do not emphasize this in this work, the
proposed method should be better at handling it than the
basic latent factor models, due to its ability of flexible de-
mographic feature integration, such as locations and tags
used in this paper. Normally, these features can be easily
mined from the cold start users and groups as they are often
required to fill out their profiles when they create accounts.

7. CONCLUSION
In this paper, we study a new type of group recommenda-

tion problem: personalized recommending event-based grou-
ps to users. In order to model the essential properties of
event-based groups, we first adopt the linear model to cap-
ture explicit features, including location features and social
features. Then, we utilize matrix factorization, one type of
the latent factor model which is widely used in group rec-
ommendation problem, to model past interactions between
users and groups. We also consider the group bias in matrix
factorization represented in terms of group activeness-based
features. Moreover, we extend the basic matrix factoriza-
tion method by incorporating pairwise tag-enhanced latent
factor. Through this way, profile information of users and
groups is also considered. Finally, our proposed method,
PTARMIGAN, integrates all the above elements into a uni-
fied model. We conducted experiments on data sets from a
popular website, Meetup, and the results demonstrate the
effectiveness of our method.
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