
Integrating Semantic Relatedness and Words’
Intrinsic Features for Keyword Extraction

Wei Zhang, Wei Feng, Jianyong Wang
Department of Computer Sci. and Tech.,

Tsinghua University, Beijing, China
{zwei11, feng-w10}@mails.tsinghua.edu.cn, jianyong@tsinghua.edu.cn

Abstract

Keyword extraction attracts much attention for its
significant role in various natural language process-
ing tasks. While some existing methods for key-
word extraction have considered using single type
of semantic relatedness between words or inherent
attributes of words, almost all of them ignore two
important issues: 1) how to fuse multiple types of
semantic relations between words into a uniform
semantic measurement and automatically learn the
weights of the edges between the words in the word
graph of each document, and 2) how to integrate
the relations between words and words’ intrinsic
features into a unified model. In this work, we
tackle the two issues based on the supervised ran-
dom walk model. We propose a supervised rank-
ing based method for keyword extraction, which
is called SEAFARER1. It can not only automati-
cally learn the weights of the edges in the unified
graph of each document which includes multiple
semantic relations but also combine the merits of
semantic relations of edges and intrinsic attributes
of nodes together. We conducted extensive experi-
mental study on an established benchmark and the
experimental results demonstrate that SEAFARER
outperforms the state-of-the-art supervised and un-
supervised methods.

1 Introduction
Keyword extraction, including extracting keyterms and
keyphrases, is popularly used to summarize the core ideas
of the original texts. It is beneficial for both users to find
text information through keyword search and information
publishers to organize content through keywords’ taxonomy.

Existing methods for the keyword extraction task are gen-
erally classified into two categories: supervised and unsu-
pervised approaches [Liu et al., 2010]. In short, these two
approaches focus on different aspects of the task. Generally,
the supervised methods [Turney, 2000] take full advantage

1SEAFARER stands for combining Semantic rElAtedness and
words’ intrinsic FeAtuRes for kEyword extRaction

of words’ own attributes, which we regard as node fea-
tures. They first convert each text unit in training data into
a feature vector and then learn to classify or rank candidate
keywords. Finally, the trained models can output the labels
or ranking scores for candidate keywords. On the other
hand, the unsupervised methods [Mihalcea and Tarau, 2004;
Grineva et al., 2009] concentrate on the relationships between
the words in the word graphs, which we call edge features
in this paper. Normally, they first represent the original text
documents as directed or undirected graphs based on the
relatedness between text units and then utilize the clustering
methods or random walk based methods to determine the final
keywords.

However, based on our observations, most existing unsu-
pervised methods consider only one type of relationship be-
tween the text units in one graph. More specifically, for some
works such as [Mihalcea and Tarau, 2004], they compute
relatedness based on the local context of the text units in their
documents. While some other works [Grineva et al., 2009]
measure the relationships based on an external knowledge
base like Wikipedia2. As these information reveals the relat-
edness between text units from different levels, it is promising
to consider these relations together in constructing graphs.
Moreover, one major limitation for both supervised methods
and unsupervised methods is that they exploit node features
and edge features separately, which lacks a general way to
integrate the merits of the two types of features.

Thus, two important issues naturally arise for the keyword
extraction task: 1) how to fuse multiple semantic relations
into a unified relatedness measurement and automatically
learn the weights of the edges in the word graphs, and 2) how
to integrate the semantic relations between words and words’
intrinsic attributes into a unified model.

To address the above issues, we extend the supervised
random walk model [Backstrom and Leskovec, 2011] to
keyword extraction task by combining it with a ranking based
framework. The proposed method is called SEAFARER.
Based on supervision information and optimization princi-
ples, SEAFARER is able to learn the weights of the edges
between words based on multiple types of relationships. And
in particular, we consider three types of relations between
words in this paper. These relations come from three text

2http://www.wikipedia.org/

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

2225

levels, i.e, document level, corpus level, and knowledge base
level. Moreover, SEAFARER seamlessly combines the edge
features and node features due to its essential advantage of
joint optimizing the parameters of the nodes and edges in
the word graphs. We conducted experiments on a benchmark
dataset and the results demonstrate that automatic edge learn-
ing by fusing multiple semantic relations achieves better per-
formance than using them separately. Moreover, considering
edge and node features together further improves the keyword
extraction results. To the best of our knowledge, this is the
first work to tackle the two issues together and combine them
in a unified model.

2 Related Work
Unsupervised Methods. Existing unsupervised methods for
keyword extraction can be roughly classified into two cat-
egories, i.e., random walk based methods [Mihalcea and
Tarau, 2004; Wan and Xiao, 2008; Liu et al., 2010] and
clustering based methods [Grineva et al., 2009; Liu et al.,
2009]. For the random walk based methods, stable ranking
scores for each node in the word graphs can be obtained after
several random walk iterations. [Mihalcea and Tarau, 2004]
first applied random walk method to keyword extraction task.
More recently, the authors in [Liu et al., 2010] proposed a
biased random walk method which computes the degree of
topic matching between a document and the words within
it to measure the prior score of each candidate keyterm.
The authors in [Zhao et al., 2011] also proposed a context-
sensitive topical pagerank method for extracting keywords in
microblogs. For the clustering based methods, they often
divide the words into clusters and then choose the repre-
sentative words in each cluster and finally merge them into
keywords [Liu et al., 2009; Grineva et al., 2009].

Unlike most previous unsupervised methods which merely
utilize one type of relation between words and directly regard
the values of the relation as the weights of the edges, we can
automatically learn the weights in a unified graph. In Sec-
tion 5, it is experimentally validated to be useful to improve
keyword extraction results.
Supervised Methods. Supervised methods for keyword ex-
traction usually need labeled training data to optimize the
model parameters. Existing supervised methods [Turney,
2000; Hulth, 2003; Jiang et al., 2009; Li et al., 2010] mainly
focus on two aspects of the task: (1) which model is more
effective, and (2) which word features are useful for the task.
While works like [Turney, 2000] apply simple supervised
methods for keyword extraction, two recent works [Jiang et
al., 2009; Li et al., 2010] show that boosting and learning to
rank based machine learning methods, e.g., GBM [Friedman,
2000] and Ranking SVM [Joachims, 2006], obtain better
results than traditional methods for keyword extraction. On
the other hand, the authors in [Hofmann et al., 2009] con-
sidered document structure features for words in addition
to the traditionally used features, such as term frequency,
word position, etc. Besides, the authors in [Xu et al., 2010]
exploited the category and infobox information in Wikipedia
articles to derive novel word features. These new features can
be regraded as complements to traditional word features.

In this paper, we argue that most previous supervised
methods for keyword extraction task ignore the semantic
relatedness between words, which has been widely used in
the unsupervised methods introduced before. Thus we adopt
supervised random walk to integrate both types of informa-
tion to achieve better results.

3 Preliminaries
3.1 Problem Formulation
In this paper, we concentrate on extracting the keywords
from text documents. We regard keywords as the union
of keyphrases and keyterms. A keyterm is a single word
which appears in at least one keyphrase in its correspond-
ing document. Keyterm extraction is an important step for
keyphrase extraction, which will be discussed later. Let D =
{d1, d2, . . . , dn} be a set of text documents and each docu-
ment di includes a set of words W = {wi,1, wi,2, . . . , wi,m}
and several keyphrases P = {pi,1, pi,2, . . . , pi,k} which con-
sist of consecutive words. The words in P form the keyterm
set T = {ti,1, ti,2, . . . , ti,u}. Then the goal of keyword
extraction is to automatically extract T and P in a given
document di accurately.

3.2 Ranking Framework for Keyword Extraction
Ranking based framework for keyword extraction is popular
in random walk based methods [Mihalcea and Tarau, 2004;
Wan and Xiao, 2008; Liu et al., 2010; Zhao et al., 2011]. The
supervised methods usually need to construct n-grams as can-
didate keywords before training. However, the determination
of the maximal length of candidate keywords is not easy. This
is because if the length of candidate keywords is constrained
to be small, some long keywords will be missed. However,
merely increasing the maximal length may cause the exces-
sive growth of training set size. Ranking based framework
is more flexible because it is simple and can extract long
keyphrases based on the ranking scores of keyterms.

Unlike the unsupervised ranking based framework for key-
word extraction, our supervised ranking based framework in-
corporates the model learning step. In this work, the ranking
framework is defined to have the following five steps:
(1) Candidate keyterm selection. Considering all words in
each document to construct a graph may suffer from low
efficiency. As most keywords are noun phrases and they
commonly consist of nouns and adjectives [Hulth, 2003;
Liu et al., 2009], we choose all nouns and adjectives as
candidate keyterms.
(2) Semantic graph construction. Different from previous
works in which the weights of edges are determined by sim-
ply choosing one type of relation in advance, we consider the
edges as functions about multiple relations, whose weights
can be automatically learned by considering each type of
relation as a feature and optimizing the parameters for each
feature. Besides, in our constructed graph, each node has its
own attributes, which can be regarded as node features and
used to compute the prior ranking score for each word.
(3) Model Learning. This step concentrates on learning
the optimal model parameters on training data. We regard
keyterms as positive nodes and the other words in the same

2226

graph as negative nodes. The optimization goal is to rank the
positive nodes higher than the negative nodes. More informa-
tion about the model parameters and its learning process can
be found in Section 4.
(4) Keyterm ranking. After getting the optimal model
parameters, we can compute the weights of edges for test
data through multiple relations between words and the prior
ranking score for each word based on its intrinsic attributes.
Then we run standard random walk to get the final ranking
score for each candidate keyterm.
(5) Keyphrase extraction. Candidate keyphrases consist
of consecutive candidate keyterms. The ranking scores of
candidate keyphrases are computed based on the simple strat-
egy adopted in [Wan and Xiao, 2008; Liu et al., 2010;
Zhao et al., 2011], which can be defined as follows,

S(p) =
∑
t∈p

S(t) (1)

where S(t) represents the score of keyterm t. Then we can
choose top-k candidate keyphrases as the final results.

Actually, our main contributions lie in the Step 2 to Step
4. Hence, we concentrate more on keyterm extraction results,
which can indeed reveal the effectiveness of our method.

3.3 Supervised Random Walk
Supervised random walk was proposed in [Backstrom and
Leskovec, 2011], which has been exploited for predicting
links’ occurrence in social networks. In short, it incorporates
supervision information into standard unsupervised random
walk model. The random walk model is defined as follows,

St+1 = α ∗ ASt + (1− α) ∗ P (2)

where S denotes the ranking scores for all the nodes in the
graph, A indicates the adjacency matrix of the graph with
each of its columns normalized to sum to 1. P represents
the prior ranking scores for all the nodes, which are usually
initialized to be equal. To assign higher prior scores to the
nodes which are more likely to be preferred, [Haveliwala,
2002] proposed a topic-sensitive pagerank which can be re-
garded as a biased random walk.

While the weights of edges are computed before con-
structing graphs in standard random walk based methods, in
supervised random walk based approaches the weights are
determined by the feature functions of edges. For each edge
ai,j , its weight can be expressed as below,

ϕ(xi,j) =
1

1 + exp(−ωT xi,j)
(3)

where ω denotes the model parameters and xi,j represents
the related features of the edge ai,j in the social network. All
ϕ(xi,j) should be normalized to sum to 1 in each column j.
Recently, a biased supervised random walk was also proposed
in [Feng and Wang, 2012].

Denote the positive node set by Ip and negative node set by
In. To optimize the model parameters ω, supervised random
walk attempts to make the ranking score Si for i ∈ Ip larger

than Sj for j ∈ In. This is similar to maximizing the AUC
(Area Under the Roc Curve), which is defined as follows,

AUC =

∑
i∈Ip

∑
j∈In I(Si − Sj)
|Ip||In|

(4)

where I(.) is an indicator function that is equal to 1 if
Si > Sj . As the indicator function is non-differential and
many optimization algorithms cannot be directly applied to
it, it is usually replaced by other differentiable functions such
as the sigmoid function. More details about the parameter
optimization will be introduced in Section 4.

4 Methods
4.1 Fusion of Multiple Relations
In this work, we consider three types of semantic relations
which come from three levels: document, corpus and knowl-
edge base.
Document. Words’ relations derived from a document are
calculated based on the number of words’ co-occurrence
times, which is able to provide local syntactic relatedness be-
tween words. To be specific, each document can be viewed as
a long word sequence and words’ co-occurrence information
can be obtained through sliding windows. The length of the
sliding window is usually set to 2-10 [Mihalcea and Tarau,
2004]. The more times the two words co-occur in sliding
windows, the higher their relatedness is in the word graphs.
Corpus. A corpus is a set of documents which usually
belong to similar domains. Based on the effectiveness of
the topic model [Blei et al., 2003], we can capture the topic
similarity between words. In this work, we first get the topic
distribution Tw = {tw,1, tw,2, . . . , tw,k} for each word w in
the corpus through GibbsLDA++3. Then we compute the
topic similarity between words wi and wj through cosine
similarity, which is defined as follows,

sim(wi, wj) =
Tw

i · Twj

||Twi|| ||Twj ||
(5)

Empirically, the number of topics is set to 50 after a few
attempts.
Knowledge base. Knowledge bases such as Wikipedia or
YAGO provide content information as well as linkage in-
formation between content units. These link information
holds a wealth of semantic information. Wikipedia contains
more than four million articles and provides larger coverage
to words than other knowledge bases. In order to utilize
the linkage information in Wikipedia, we exploit the toolkit,
Wikipedia-Miner4. Given two words wi and wj , the semantic
relatedness between them can be computed as follows,

sim(wi, wj) = 1− log(max(|Ei|, |Ej |))− log(|Ei|
⋂
|Ej |)

log(|W |)− log(min(|Ei|, |Ej |))
(6)

where Ei is the set of documents connected to wi and |W | is
the total number of documents.

3http://gibbslda.sourceforge.net/
4http://wikipedia-miner.sourceforge.net/index.htm

2227

Finally, we get three levels’ relatedness between words.
We regard these relations as edge features. Based on Equa-
tion 3, we can linearly combine the edge features and get the
weights of edges though the sigmoid function just the same
as supervised random walk. Thus, we get a unified graph
for each document di. Finally, given the document di, the
equation of supervised random walk which fuses multiple
relations is defined as below,

St+1
i = α ∗ Ai(ϕe,i)S

t
i + (1− α) ∗ Pi (7)

where Ai(ϕe,i) denotes the transition matrix for document
di which is a function matrix here. Its elements are edge
functions in the graph for each document, and ϕe,i denotes
all the edge functions in the graph of di. The edge functions
are defined the same as Equation 3.

4.2 Integration of Edge and Node Features
In this paper, we adopt five common node features that have
been widely used in this task. They are: term frequency (TF),
document frequency (DF), term frequency-inverse document
frequency (TF-IDF), position of term (POS), and length of
term (LEN). However, we should be aware that our method is
flexible to incorporate arbitrary node and edge features.

We also utilize sigmoid function to combine these features
for each word, which is defined as follows,

ψ(zi,j) =
1

1 + exp(−ωT zi,j)
(8)

where zi,j denotes the features of word wi,j in document di.
Based on the idea of biased random walk, we incorporate
the feature functions to the second term of Equation 7. To
maintain the ranking scores of all words in each document
to sum to 1, we should also normalize the values of node
feature functions. At last, given the document di, we give the
formulation of the whole model by combining with the fusion
of multiple semantic relations, which is defined as follows,

St+1
i = α ∗ Ai(ϕe,i)S

t
i + (1− α) ∗ Pi(ψn,i) (9)

where Pi(ψn,i) denotes a vector whose elements are node
feature functions of the word graph of di. This is the final
formulation we adopt in our method SEAFARER.

4.3 Parameter Learning
We now discuss the method to get the optimal model param-
eters ωe and ωn, which denote edges’ and nodes’ related
parameters respectively. We adopt the gradient ascent method
to seek the maximal value of objective function φwith similar
form to Equation 4 except the indicator function is replaced
by the sigmoid function. The key to the gradient ascent
method is calculating the first-order derivative of the objective
function, which is defined as follows,

∂φ(ω)

∂ω
=
∑
i∈D

∑
j∈Ii,p∧k∈Ii,n

σ(dif(i,j,k))

dif(i,j,k)

(
∂Si,j

∂ω −
∂Si,k

∂ω

)
|Ii,p||Ii,n|

(10)

where Ii,p denotes the keyterm set and Si,j is the ranking
score of keyterm tj in the document di. ω represents model

parameters which include ωe and ωn. dif(i,j,k) is set to
be equal to Si,j − Si,k. σ represents the sigmoid function.
Note that the above expression usually should add a 2-norm
regularization term to avoid overfitting.

Then the problem is to seek ∂Si,.

∂ω . Based on Equation 9,
we get the following two expressions for each document di,

∂Si
∂ωe

= α ∗

(
Ai(ϕe,i)

∂Si
∂ωe

+
∂Ai(ϕe,i)
∂ωe

Si

)
(11)

∂Si
∂ωn

= α ∗ Ai(ϕe,i)
∂Si
∂ωn

+ (1− α) ∗
∂Pi(ψn,i)
∂ωn

(12)

It is obvious to see that the above two equations have similar
forms to the pagerank expression. Based on the algorithm
proposed in [Backstrom and Leskovec, 2011], we can itera-
tively compute ∂Si

∂ω to get the final stable results.

5 Experimental Study
5.1 Dataset and Preprocessing
To evaluate the performance of our method and compare
with other state-of-the-art methods for keyword extraction,
we chose a benchmark dataset [Hulth, 2003] which has been
widely used in other related works [Mihalcea and Tarau,
2004; Liu et al., 2009; 2010]. This dataset consists of 2000
abstracts and their corresponding annotated keywords, which
have been already divided into training, validation and test
set. Thus it is reliable to compare our results with some
already published results on this dataset. Because annota-
tors scanned the whole text to choose the keywords, there
are some keywords not occurring in the abstracts and titles,
which means the maximal coverage of the extraction results
cannot reach to 100%. We did not remove these words when
computing the evaluation results.

For data preprocessing, we first removed stopwords5 from
the raw text, then we used Stanford Log-linear Part-Of-
Speech Tagger6 to assign parts of speech to each word. Fi-
nally, we stemmed all the saved words by Porter’s stemmer7.

5.2 Evaluation Metrics
Based on our observations, almost all previous works on
keyword extraction adopt precision, recall and F1-measure to
evaluate the results. Hence, we keep our evaluation metric
consistent. Besides, we tune the hyperparameters of our
method based on AUC metric on the validation dataset. The
results can also reveal the effect of combining edge and node
features for keyword extraction.

5.3 Parameter Setting
Damping factor α. In our method, α controls the probability
of random jumping from the source node to a random node
in the graph. It is the hyperparameter which we tune on the
validation set based on AUC metric. As the results showed

5http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-
stop-list/english.stop

6http://nlp.stanford.edu/software/tagger.shtml
7http://tartarus.org/martin/PorterStemmer/

2228

Method Top-5 Top-10 Top-15
Prec Recall F-score Prec Recall F-score Prec Recall F-score

BRW 0.709 0.182 0.289 0.592 0.303 0.401 0.517 0.394 0.447
WRW 0.552 0.142 0.225 0.524 0.269 0.355 0.492 0.375 0.426

LR 0.727 0.186 0.297 0.620 0.318 0.420 0.548 0.417 0.474
RankSVM 0.731 0.187 0.298 0.617 0.316 0.418 0.547 0.417 0.473

ListNet 0.732 0.187 0.298 0.616 0.315 0.417 0.543 0.413 0.469
GBM 0.759 0.194 0.309 0.638 0.326 0.431 0.557 0.424 0.481

SEAFARER 0.768 0.197 0.313 0.654 0.335 0.443 0.574 0.437 0.496

Table 1: Comparison of different methods on keyterm extraction on the Hulth’s data.

in Figure 1, α gains better performance in the region of 0.7
to 0.9 and get optimal AUC at 0.8. Therefore, we chose
α = 0.8 without dedicated tuning. Besides, when α is set
to be 0 or 1, the corresponding methods are the special cases
of our method for only considering node and edge features
separately. As their results are explicitly worse, it indicates
the advantage of combining both node and edge features.

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
U

C

Weight α

AUC

Figure 1: The effect of damping factor α

Learning rate η. In learning process, η determines the
convergence speed of parameters. A large η may speed up
the training process but it may also cause failures to converge.
We chose 10−4 as a tradeoff.
Regularization parameter λ. For simplicity, we set λ = 1,
the same as [Backstrom and Leskovec, 2011].

5.4 Baselines
In order to verify the superiority of our method, we compare
our method with some supervised and unsupervised methods,
which are listed below:
Basic Random Walk (BRW). It constructs the word graphs
based on the co-occurrence information in local documents
and then run standard random walk model on it to get nodes’
ranking scores.
Wiki-based Random Walk (WRW). This is similar to the
previous one except that the graphs are constructed based on
the linkage information from Wikipedia.
Yahoo! Terms Extractor. It is an implementation of
keyword extraction from industry which can be accessed
through the web service8. As it directly returns the extracted
keyphrases without ranking scores, we only compare with it
in the last experiment.
Logistic Regression (LR). Logistic regression is a popular
supervised approach for its simplicity and effectiveness in
many problems.

8http://developer.yahoo.com/search/content/V1/termExtraction.html

RankSVM. RankSVM9 is a state-of-the-art pairwise learning
to rank approach which has been experimentally demon-
strated to gain better performance than SVM and some other
methods in keyword extraction task [Jiang et al., 2009].
ListNet. ListNet [Cao et al., 2007] is a starte-of-the-art
listwise learning to rank approach which sometimes performs
better than RankSVM.
Gradient Boosting Machine (GBM). Gradient Boosting
Machine [Friedman, 2000] is an ensemble learning based
approach, which has been shown to perform best in keyword
extraction among the methods adopted in [Li et al., 2010].

In addition to the above introduced methods, we also com-
pare our results with some previous works’ results on the
same dataset, including Bagging in [Hulth, 2003], TextRank
in [Mihalcea and Tarau, 2004], clustering-based method (SC)
in [Liu et al., 2009], Topical PageRank (TPR) in [Liu et al.,
2010]. All the results will be discussed later.

5.5 Experimental Results
(A) Evaluation of relations’ fusion. We first show the ad-
vantage of fusing multiple relations with automatic learning
the weights of edges based on optimization principles. We
compare our fusion method with three versions of random
walk method, which are different in their used graphs. We
use “doc”, “corp”, and “wiki” to represent the random walk
method using graphs at the document, corpus, and Wikipedia
levels, respectively. We compare them on keyterm extraction
and the results are shown in Table 2.

Relation Top-5 Top-10 Top-15
Prec Recall Prec Recall Prec Recall

doc 0.709 0.182 0.592 0.303 0.517 0.394
corp 0.444 0.114 0.434 0.223 0.425 0.324
wiki 0.552 0.142 0.524 0.269 0.492 0.375

fusion 0.738 0.189 0.621 0.318 0.546 0.416

Table 2: Evaluation of the effectiveness of multiple relations’
fusion.

The results show that the fusion of several relations and
automatic learning of the edge weights indeed outperforms
the other three methods. This is consistent with our intuition
that the automatic learned weights of edges based on multiple
semantic relations can reflect the relationship between words
more accurately. Besides, random walk using document level

9http://www.cs.cornell.edu/people/tj/svm light/svm rank.html

2229

information and knowledge base information obtain better
results than using corpus level information. One possible
reason is that when computing two words’ similarity based
on their topic distribution, we ignore their documents’ topic
distributions, which are important as keywords’ topic distri-
butions should be similar with their documents’.
(B) Evaluation of keyterm ranking results. Since keyterm
ranking is the essential step for keyphrase ranking and our
method is directly targeted to improve the keyterm ranking
results. This part of the experimental results can indeed
reflect whether our method works.

We conducted experiments on top 5, top 10 and top 15
extracted keyterms. All the results are presented in Table 1.
As the results show, SEAFARER get the best results in all
metrics which indicates that our method indeed outperforms
other baselines. In conjunction with the results shown in
Figure 1, we can clearly see the advantage of combining both
edge and node features. Among the baselines, GBM performs
better than other methods, which is consistent with [Li et al.,
2010].
(C) Evaluation of keyphrase ranking results. Based on the
ranking scores of candidate keyterms, we can get the ranking
scores of keyphrases based on Equation 1. For non-random
walk based methods, such as Logistic Regression, RankSVM,
ListNet and GBM, we tried two strategies to deal with the raw
scores of candidate keyterms. The first one is to normalize
their ranking scores in each document to sum to 1 before
getting the ranking scores for candidate keyphrases. While
the second strategy is to directly use the ranking scores to
get the candidate keyphrases’ final score. At last, we use
the better experimental results to represent their effectiveness.
We chose top-15 returned phrases as candidates because the
results show it can achieve high recall while retaining relative
high precision for all the methods. The results are shown in
Table 3,

Method Prec Recall F-score
BRW 0.315 0.457 0.373
WRW 0.325 0.475 0.385

LR 0.329 0.478 0.390
RankSVM 0.314 0.455 0.372

ListNet 0.330 0.478 0.391
GBM 0.329 0.477 0.390

SEAFARER 0.335 0.485 0.396
Table 3: Comparison of different methods on keyphrase ex-
traction of the top 15 candidate keyphrases.

The above results lead to the following observations: (1)
the most popular supervised methods achieve a little better
performance than the unsupervised methods. However, the
performance gap w.r.t. keyphrase extraction is smaller than
the keyterm extraction results; and (2) integrating edge and
node features in the word graphs can also help keyphrase
extraction task which makes an improvement over the-state-
of-art methods for keyphrase extraction, such as GBM and
ListNet.
(D) Comparison with past works’ results. As we intro-
duced in Section 5.1, the test data set is the same for most

works testing on Hulth’s dataset. Thus, we tried to get
the extraction results of keyphrases in the similar settings
to previous works and then compare our results with those
published results mentioned in Section 5.4 fairly. The com-
parisons are listed in Table 4.

Method Assigned Correct Precision
Yahoo!’s 6,312 1,407 0.223
Hulth’s 7,815 1,973 0.252

TextRank 6,784 2,116 0.312
SC 7,158 2,505 0.350

SEAFARER 7,144 2,514 0.352
Method Top5-Prec Top5-Recall Top5-Fscore

TPR 0.354 0.183 0.242
SEAFARER 0.412 0.210 0.278

Table 4: Comparison with some previous works’ results on
Hulth’s data set.

To match the published results of those methods, the
comparisons consist of two parts. The first part ensures
that all methods have similar number of extracted candidate
keyphrases. While the second part evaluates the results of
our method on the same metric as TPR adopted. The results
show that our method performs best in the two parts of the
experiments. Note that our method achieves a little improve-
ment over the method SC. However, based on the authors’
observations on the test data, SC exploited an additional
frequent word list to remove the terms which are too com-
mon to be keyphrases in postprocessing process. This may
notably improve their final results. As this process involves
manual intervention, we argue that our method indeed gain
better performance than theirs. In sum, all the comparisons
demonstrate the superiority of automatic learning the edge
weights and integrating the edge and node features for the
keyword extraction task.

6 Conclusion
In this paper, based on the supervised random walk model,
we solve two important issues in the keyword extraction
task which are ignored by most previous works. First, by
regarding each type of semantic relations as edge features,
we utilize the sigmoid function to fuse them into a uniform
semantic measurement, which is then used in the word graph
construction. Second, inspired by the idea of biased random
walk, we use node features to model the prior ranking score
for each word. Through optimization, we can automatically
learn the weights of the edges in the word graphs and seam-
lessly integrate the edge and node features together for the
task. Finally, we have conducted extensive experiments on
a standard benchmark dataset and all the results demonstrate
the advantage of our method.

Acknowledgments
This work was supported in part by National Natural Science
Foundation of China under Grant No. 61272088 and National
Basic Research Program of China (973 Program) under Grant
No. 2011CB302206.

2230

References
[Backstrom and Leskovec, 2011] Lars Backstrom and Jure

Leskovec. Supervised random walks: predicting and rec-
ommending links in social networks. In WSDM, pages
635–644, 2011.

[Blei et al., 2003] David M. Blei, Andrew Y. NG, and
Michael I. Jordan. Latent dirichlet allocation. JMLR,
3:993–1022, March 2003.

[Cao et al., 2007] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-
Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In ICML, pages 129–136,
2007.

[Feng and Wang, 2012] Wei Feng and Jianyong Wang. In-
corporating heterogeneous information for personalized
tag recommendation in social tagging systems. In KDD,
pages 1276–1284, 2012.

[Friedman, 2000] Jerome H. Friedman. Greedy function
approximation: A gradient boosting machine. Annals of
Statistics, 29:1189–1232, 2000.

[Grineva et al., 2009] Maria P. Grineva, Maxim N. Grinev,
and Dmitry Lizorkin. Extracting key terms from noisy and
multitheme documents. In WWW, pages 661–670, 2009.

[Haveliwala, 2002] Taher H. Haveliwala. Topic-sensitive
pagerank. In WWW, pages 517–526, 2002.

[Hofmann et al., 2009] Katja Hofmann, Manos Tsagkias,
Edgar Meij, and Maarten de Rijke. The impact of doc-
ument structure on keyphrase extraction. In CIKM, pages
1725–1728, 2009.

[Hulth, 2003] Anette Hulth. Improved automatic keyword
extraction given more linguistic knowledge. In EMNLP,
pages 216–223, 2003.

[Jiang et al., 2009] Xin Jiang, Yunhua Hu, and Hang Li. A
ranking approach to keyphrase extraction. In SIGIR, pages
756–757, 2009.

[Joachims, 2006] Thorsten Joachims. Training linear svms
in linear time. In KDD, pages 217–226, 2006.

[Li et al., 2010] Zhenhui Li, Ding Zhou, Yun-Fang Juan, and
Jiawei Han. Keyword extraction for social snippets. In
WWW, pages 1143–1144, 2010.

[Liu et al., 2009] Zhiyuan Liu, Peng Li, Yabin Zheng, and
Maosong Sun. Clustering to find exemplar terms for
keyphrase extraction. In EMNLP, pages 257–266, 2009.

[Liu et al., 2010] Zhiyuan Liu, Wenyi Huang, Yabin Zheng,
and Maosong Sun. Automatic keyphrase extraction via
topic decomposition. In EMNLP, pages 366–376, 2010.

[Mihalcea and Tarau, 2004] Rada Mihalcea and Paul Tarau.
Textrank: Bringing order into text. In EMNLP, pages 404–
411, 2004.

[Turney, 2000] Peter D. Turney. Learning algorithms for
keyphrase extraction. Inf. Retr., 2(4):303–336, May 2000.

[Wan and Xiao, 2008] Xiaojun Wan and Jianguo Xiao. Sin-
gle document keyphrase extraction using neighborhood
knowledge. In AAAI, pages 855–860, 2008.

[Xu et al., 2010] Songhua Xu, Shaohui Yang, and Francis
Chi-Moon Lau. Keyword extraction and headline gener-
ation using novel word features. In AAAI, 2010.

[Zhao et al., 2011] Wayne Xin Zhao, Jing Jiang, Jing He,
Yang Song, Palakorn Achananuparp, Ee-Peng Lim, and
Xiaoming Li. Topical keyphrase extraction from twitter.
In ACL, pages 379–388, 2011.

2231

