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ABSTRACT
In location-based social networks (LBSNs), new successive
point-of-interest (POI) recommendation is a newly formu-
lated task which tries to regard the POI a user currently
visits as his POI-related query and recommend new POIs
the user has not visited before. While carefully designed
methods are proposed to solve this problem, they ignore the
essence of the task which involves retrieval and recommen-
dation problem simultaneously and fail to employ the social
relations or temporal information adequately to improve the
results.

In order to solve this problem, we propose a new model
called location and time aware social collaborative retrieval
model (LTSCR), which has two distinct advantages: (1) it
models the location, time, and social information simulta-
neously for the successive POI recommendation task; (2) it
efficiently utilizes the merits of the collaborative retrieval
model which leverages weighted approximately ranked pair-
wise (WARP) loss for achieving better top-n ranking results,
just as the new successive POI recommendation task needs.
We conducted some comprehensive experiments on publicly
available datasets and demonstrate the power of the pro-
posed method, with 46.6% growth in Precision@5 and 47.3%
improvement in Recall@5 over the best previous method.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Information Filtering, Retrieval
Models

General Terms
Algorithms, Experimentation

Keywords
Collaborative Retrieval, Location based Social Networks,
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1. INTRODUCTION
With the popularity of location-based social networks (LB-

SNs) allowing users to share their location-embedded in-
formation or attend location-aware activities at given time,
more and more researchers pay attention to research tasks in
this field, such as event-related recommendation [14, 28, 27],
location prediction [12, 1], and location-aware information
retrieval [22], etc.

In these studies, successive POI recommendation [4] is
a newly emerging task which tries to treat users’ current
POIs as POI-related queries and recommend new POIs users
have not visited before. Hence, it can be regarded as a
hybrid task involving both retrieval and recommendation.
It is important for real-time location-aware recommender
systems. For example, it is extremely common that when
a user visited one location just now, he may not be clear
where to go next. The recommender system can treat the
current location of the user as his location-aware query and
automatically recommend new POIs, which is beneficial for
both users and businesses.

Compared with traditional POI recommendation task which
also tries to recommend new POIs for users [3, 26, 13, 7, 10,
9], the essential difference is that the performance of succes-
sive POI recommendation task is largely influenced by users’
current visiting locations. To be more specific, the location
which a user will visit next is usually near his current vis-
iting POI. Besides, the shift from one specified location to
another specific location may be very common. One exam-
ple is the popular travel route in a tourist city, in which the
transition from one POI to another is usually fixed. With-
out explicitly modeling the users’ current visiting POIs, the
approaches of traditional POI recommendation cannot cap-
ture the localization of successive visiting and the frequent
shift patterns. Thus, it will result in poor performance by
directly applying the models designed for traditional POI
recommendation to successive POI recommendation task.

Existing approaches for successive POI recommendation
task [18, 4] consider users’ current locations to generate rec-
ommendation results. Nevertheless, they ignore to utilize
the social relations between users or temporal information of
visiting adequately, which can influence users’ final decisions
to a certain extent. On the one hand, social relations indi-
cate that users may visit locations their friends have been to,
which is reasonable as friends have similar interests. On the
other hand, users and locations both have their own tempo-
ral characteristics. Different users may have various visiting
patterns in the same period which are determined by their
own habits. POIs also have different probability of being
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visited in different time periods. For example, restaurants
are more likely to be visited in lunch and dinner time. In
later data analysis, we verify that check-in patterns of users
and POIs over timelines are indeed diverse through correla-
tion analysis. Besides, the characteristic of hybrid retrieval
and recommendation involved in this task still needs to be
studied, especially when modeling the top-k ranking results
of recommendations which is significant for successive POI
recommendation, as for each user the number of successive
POIs visited for specific location-aware query is small.

To tackle the above issues, we propose a new model called
location and time aware social collaborative retrieval model
(LTSCR). It is a natural extension of the recently proposed
collaborative retrieval model (CRM) [21] which models query,
user, and item in a unified model and first employs the loss
function called weighted approximate rank pairwise (WARP)
loss [19, 20] in collaborative filtering to gain better top k rec-
ommendation results and is more suitable for bybrid task in-
volving retrieval and recommendation task simultaneously,
which is similar to our successive POI recommendation task.
In order to better model the users’ successive check-in be-
haviors in LBSNs, LTSCR considers users’ current visiting
locations, visiting time, and user himself as implicit queries.
Each candidate location is composed of three types of la-
tent factors: (1) the first kind of factor captures transition
patterns between successive check-in POIs, (2) the second
models preference between users and locations, (3) and the
third reveals locations’ popularity over time. Besides, so-
cial relations are utilized to regularize the degree of interest
similarity between friends, and the localization property is
employed to constrain candidate POIs to be within the near
regions of the query POI.

In summary, our major contributions in this paper are
summarized as follows:

• We consider users’ current visiting locations, visiting
time, social relations, and the localization of succes-
sive check-ins simultaneously for successive POI rec-
ommendation task.

• We propose a complete model called Location and
Time Aware Social Collaborative Retrieval (LTSCR)
which incorporates the above information into a uni-
fied model and utilizes the merits of standard collab-
orative retrieval model to the successive POI recom-
mendation task in LBSNs.

• We have conducted experiments on publicly available
data sets from LBSNs. The results demonstrate that
LTSCR performs better than several other methods.

The rest of the paper is organized as follows: we first
discuss the related works in Section 2. Section 3 gives nec-
essary preliminaries for successive modeling. In Section 4,
we formulate our model in detail. Section 5 presents the
experimental results and analysis. Finally, we conclude this
paper in Section 6.

2. RELATED WORK
In this section, we briefly introduce three lines of researches

related to our task: (a) traditional POI recommendation;
(b) successive POI recommendation; and (c) collaborative
retrieval.

Traditional POI Recommendation. Traditional POI
recommendation task has been extensively studied in the
last several years. Many researches hold a central assump-
tion that nearer locations will be more likely to be visited
by users. Based on this, a series of works incorporate dis-
tance influence factor into diverse traditional recommenda-
tion models [24, 3, 11]. Ye et al. [24] first combined dis-
tance influence factor with user-based collaborative filtering
method. Then Cheng et al. [3] blended probabilistic matrix
factorization with a gaussian mixture model to capture the
influence of distance. More recently, Kurashima [11] pro-
posed a geo topic model to integrate distance factor with
latent Dirichlet allocation [2]. Another research direction is
to utilize temporal information check-ins to improve loca-
tion recommendation results [26, 7, 10]. Similar to the evo-
lutional trend of researches for integrating distance factor,
they also incorporate temporal information into user-based
collaborative filtering, matrix factorization and topic model
successively. The above works demonstrate the advantages
of considering location distance information and temporal
information in traditional POI recommendation, which can
motivate the research in successive POI recommendation.

Successive POI Recommendation. Lately, a few suc-
cessive POI recommendation works [18, 4] have been con-
ducted. Snag et al. [18] proposed a probabilistic model to
integrate category transition probability and POI popular-
ity to solve this problem. However, their method relies on
categories of POIs and user attributes such as gender and
residence information, which might not be easy to get due
to privacy concern. Thus their method cannot be directly
used in this paper. Cheng et al. [4] extended the state-of-
the-art context-aware recommendation method, i.e., factor-
ized personalized Markov chain (FPMC) [16], to provide a
new model called FPMC with localized region constraint
for successive POI recommendation. They divided the geo-
graphical space into grids, and the candidate recommenda-
tion locations for a user should be within the grid the user
currently stays in or its surrounding eight grids. This condi-
tion is called localized region constraint. The experimental
results indicated the effectiveness of their method. As they
ignore to utilize the social relations between users and tem-
poral information of visiting, our works first propose two
extensions based on their model to incorporate these useful
information and then we propose a new model called LTSCR
to combine the extensions with the standard collaborative
model, which makes our works largely different from theirs.
Two recent works [5, 23] try to predict the next user move-
ment based on users’ previous sequential movements. Yet
our problem is obviously different from theirs in two aspects.
First, they consider which place users will move to and when
they will reach while we concentrate on recommending new
POIs which users have not visited before. Second, they need
to utilize multiple recent check-ins of each user to construct
sequential model for location transfer and time information
prediction while we only regard each user’s current visiting
location as a query for collaborative retrieval. Besides, Yin
et. al. [25] proposed a location-content-aware recommender
system which recommends items given a query location from
users. However, their problem setting is different from ours
as the query locations in theirs are regions (e.g. cities) and
they want to recommend spatial items within those regions
while our queries include all locations and we try to recom-
mend POIs near those query locations.
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Figure 1: Basic Overview of Location-based Social
Network.

Collaborative Retrieval. Collaborative retrieval task was
first proposed by Weston et al. [21]. It blends traditional in-
formation retrieval and personalized recommendation tasks.
In order to solve this problem, they proposed a latent collab-
orative retrieval model, which could be roughly divided into
two parts. The first part modeles the relation among query,
user, and item for solving retrieval problem. The second
part captured the relation between user and item for deal-
ing with the recommendation problem. Besides, the model
adoptes the WARP loss function to train the model in or-
der to gain better top k results. Upon this model, Hsiao et
al. [9] incorporated social relation information to regularize
user latent factors and achieved better results. More details
about collaborative retrieval model can be referred in the
next section. In this paper, we propose a new model called
LTSCR based on the standard collaborative model to solve
our problem.

3. PRELIMINARIES
In this section, we first analyze properties of the datasets

from LBSNs. Then we formulate the successive POI recom-
mendation problem in our setting. After that, the standard
method for this task is presented. Finally, the collaborative
retrieval model is introduced at last as the cornerstone of
the subject of the next section.

3.1 Data Analysis
Location-based social networks are common in current so-

cial networks. Almost all LBSNs and their variations share
the following basic data attributes: user set U , POI set P,
social relation set S, and temporal information set T . Their
primary relations are shown in Figure 1. Basically, for a user
u, when he visits a POI p at time t, he can share this check-
in record with others, such as his friend set S(u). In this
work, we adopt two publicly available datasets published by
[6] to test our proposed models. The first one was crawled
from Brightkite and the other was from Gowalla. Thus, we
denominate the first data set as Brightkite and the second
as Gowalla for convenience.

In order to compute the distance distribution of successive
check-in pairs, we first mine the successive check-in pairs.
Inspired by the methods mentioned in [21, 4], we determine
a maximal time interval Tmax. For any two successive check-
in POIs from the same user, the check-in time difference can
not exceed Tmax. After we collect enough consecutive check-
in pairs, we calculate the cumulative distribution of distance
between successive check-in locations. Figure 2 shows that
in Gowalla dataset, 90.1% check-in pairs lie within 5 miles
and only less than 6% pairs’ distances surpass 10 miles. This
phenomenon about localization of successive check-ins is less
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Figure 2: Distance Between Successive Check-in
POIs.

visible in Brightkite dataset. However, there are still more
than half check-in pairs’ distances within 5 miles and more
than eighty percents pairs’ distances less than 20 miles. In
summary, users’ next POI choices are constrained in local
regions near their current visiting POIs.

Besides, we also want to check whether temporal informa-
tion may influence the successive POI recommendation re-
sults. It is intuitive that for different users, their own habits
may cause very different visiting patterns as time goes on.
And for specific POI, its check-in patterns should be differ-
ent from other POIs belonging to different categories. For
example, parks are usually visited by users in daytime, while
restaurants are preferred by users at dinner time. To verify
this, we utilize Pearson correlation to measure the correla-
tion of users’ temporal check-in patterns in the same location
region to ensure the local time consistency and the same as
for POIs. More specifically, we first filter users or locations
with few check-in records. We use a 24 dimensional vec-
tor to represent the temporal check-in pattern of each user
or item, with each dimension corresponding to an hour and
each value denoting the total check-in count belonging to
that hour. Then for users (or POIs) in the same geographi-
cal region, we calculate their Pearson correlation in pair and
average the results finally for all pairs in all regions. The re-
sults for both datasets are shown in Figure 3. We can see
that all of them lies in the interval [+0.22,+0.32], which
means the temporal check-in patterns have low positive cor-
relation. Another phenomenon is that the correlation of
locations’ temporal check-in patterns is a little lower than
users’ on both datasets. In all, the check-in patterns of users
and POIs over time are indeed diverse. The above analysis
suggests us to utilize the temporal information of visiting to
help successive POI recommendation.

3.2 Problem Formulation
Based on the above data analysis, we formulate the succes-

sive POI recommendation task below. Given a user u (u ∈
U), his already visited POI set P (u), his current visiting
POI i (i ∈ P), and the corresponding visiting timestamp
t (t ∈ T ), the task is to recommend a new POI c (c /∈ P (u))
for user to visit successively. Generally, top k new POIs
are delivered to user u which are ranked according the score
gotten from a defined score function f(u, t, i, c).

In the collaborative retrieval setting, i and t can be consid-
ered as a location and time aware query of user u. The user
wants to know which successive POI he can visit in the near
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future. Hence, the above task can be regarded as one kind
of collaborative retrieval task. However, there is no need to
consider all POIs as candidate results as the works [21, 9]
do because of the localization property of successive check-
ins. Thus, we only need to search near POIs according to
i to determine the final results, which is supported by the
previous data analysis.

3.3 Collaborative Retrieval Modeling
The central idea of collaborative retrieval is to capture the

relation among users, queries, and items in a unified model
to calculate the possibility score f(u, q, i) of user u preferring
item i under the query q. Assume I and Q denote the item
set and query set, respectively. K is the dimension of latent
factors, U ∈ RK×|U| are user factors, V ∈ RK×|I| are item
factors, Q ∈ RK×|Q| are query factors, Uu ∈ RK is the latent
factor of user u, Vi ∈ RK is the latent factor of item i, and
Qq ∈ RK is the latent factor of query q. Then for a user u,
given a query q(q ∈ Q) and an item i, the score function is
formally expressed as follows,

f(u, q, i) = QT
q TuVi + UT

uVi (1)

where Tu ∈ RK×K is a user dependent transform matrix.
We can see that the first part of the equation is to capture
the relation among query, user, and item, while the second
part is to model the relation between user and item. Thus,
the first part corresponds to the retrieval model and the
second part corresponds to the recommendation model.

The collaborative retrieval model utilizes weighted ap-
proximate rank pairwise (WARP) [19] loss to complement
traditional pairwise loss functions. Unlike previous pair-
wise loss functions which treat all training pairs equally,
the WARP loss actively learns more from training pairs
where positive items have high ranking positions and thus
can achieve better top k ranking results (see [20] for more
explanations). The rank for each positive item i is defined
as below,

r(i) =
∑
j 6=i

I
(
(1 + f(u, q, j)) > f(u, q, i)

)
(2)

where I(·) is an indicator function. It is clear that if f(u, q, i)
gets larger value, less items will satisfy

(
(1 + f(u, q, j)) >

f(u, q, i)
)

and item i should get lower rank.
Computing the scores of all items to get ranks is not ef-

ficient. Hence, an approximate method is proposed. For
a given positive item i, it draws a negative item j with-

out replacement and terminates until item j satisfies the
margin-based comparison 1+f(u, q, j) > f(u, q, i). Suppose
the number of sampling step to get j for i is Ni. Then the
approximate rank is calculated below,

r̃(i) ≈
⌊ |I| − 1

Ns,i

⌋
(3)

where b·c means the floor function, |I| is the total number
of items.

After getting the approximate rank, the rank loss for the
positive item i is defined as follows,

L
(
r̃(i)

)
=

r̃(i)∑
n=1

ωn, with ω1 ≥ ω2 ≥ · · · ≥ 0. (4)

where ωn is the weight of position n in the ranked list and
often defined to be 1/n.

To optimize the loss function, efficient learning algorithms
such as stochastic gradient descent (SGD) require that it is
derivable for model parameters. Following the idea from
[20], the margin function max(0, 1 + f(u, q, j) − f(u, q, i))
can be added to meet the requirement. During the learning
process, all the training pairs are weighed in every iteration
according to the above two equations.

In summary, the collaborative retrieval model has two
main characteristics: (1) it computes both query depen-
dent and independent preference score through the retrieval
model and recommendation model respectively, and jointly
learn query, user, and item factors in a unified model; (2)
it utilizes WARP loss function for optimization to get bet-
ter top-k ranking recommendation results. Inspired by the
above two ideas, we design our model for better modeling
users’ successive check-in behaviors and further achieve su-
perior recommendation results.

4. METHODS
In this section, we first discuss the method to handle social

relations and temporal information. Based on this, we then
introduce the integrated new model we proposed and the
corresponding model parameter learning approach.

4.1 Social Relation
Social relations are basic elements in social networks, which

cover friendship, following relationship, trust relationship,
etc. These relations could be one-way or two-way relation.
Usually, users with social relations tend to have similar pref-
erences and affect each other in some activities. Intuitively,
these are also suitable for successive POI recommendation
task, since users have more possibility of visiting the POIs
their friends have visited.

Social regularization is an elegant approach to integrating
social relations with the latent factor model [15]. It encour-
ages users who are socially connected to have similar latent
factors. Assume the original objective function is Lo, the ob-
jective function of social regularization corresponds to Ls,
then the hybrid objective function becomes their blending,
i.e., Lo + αLs with a relative weight α.

We define the objective function of social regularization
as follows,

Ls =
∑
u∈U

||Uu −
1∑

u′∈S(u) Bu,u′

∑
u′∈S(u)

Bu,u′Uu′ ||2 (5)
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where S(u) means the friend set of user u, Bu,u′ is the simi-
larity value of user u and his friend u′, || · ||2 is the L2-norm.
Thus, the central problem becomes how to compute the sim-
ilarity value βu,u′ . Using binary social relation directly can-
not capture the different degrees of similarity between user
u and his different friends. To address this issue, we define
the following formula to compute the similarity degree,

Bu,u′ =


∑|U|

i=1 Su,iSu′,i√∑|U|
i=1(Su,i)2

√∑|U|
i=1(Su′,i)

2

if u′ ∈ S(u)

0 else

(6)

where Su,i equals 1 if user u and i are friends. We only
keep their friends who rank within top k by the similarity
degree to save computation cost for later parameter learning
in Equation 9. In the experiments, we set k to be 10.

4.2 Temporal Information
To model temporal information of users’ check-ins, we first

segment the continuous temporal space into fixed-sized time
periods. For example, we can just treat one hour of a day
as one time period, which means the number of time peri-
ods |T | is 24. Then for any timestamp, it will belong to
one time period uniquely. This could be easily determined
by the hour value of the timestamp. In addition to con-
structing time periods based on hours, we can also consider
weekday, month, and season information. There is a trade-
off between time granularity and model complexity. In other
words, too many periods will result in the overfitting prob-
lem, and further influence the final results. In this paper, we
find that dividing 24 hours of each day into 6 time periods
and meanwhile differentiating weekdays and weekends can
get a little better results. Thus the number of time periods
is set to be 12 (|T | = 2× 6) in experiments.

Based on previous data analysis, incorporating the time
period information into the new model for both users and
POIs is promising. To reflect the diverse preference of users
in different time periods, we extend the user latent factor
Uu ∈ RK to the user temporal latent matrix Uu ∈ RK×|T |,
where Uu,t ∈ RK denotes the temporal latent factor in time
period t for user u. Besides, in order to reveal the popu-
larity of each location changed over time periods, we add a
temporal popularity factor Ti ∈ R|T | for each POI i.

One concern for the operations is that the user temporal
matrix Uu has K × |T | parameters to be learned. Thus it
is more likely to suffer from overfitting than without con-
sidering temporal information. To overcome this issue, we
can further add temporal regularization term to the objec-
tive function to control user temporal matrix in addition to
social regularization term. In this work, we suppose that
the change of factors of near time periods may be smooth.
We calculate the similarity degree between near time peri-
ods based on the check-in behaviors of each user through
cosine similarity. For each time period t, there are two near
time periods, i.e., t−1 and t+1. The first time period is near
to the last due to periodicity. We denote the two similarity
values as At,t−1 and At,t+1 , respectively. Assume P (u, t)
denotes the POI set user u has visited in time period t, then
the similarity degree At,t−1 can be computed as follows,

At,t−1 =

∑|P|
i=1 Pu,t,iPu,t−1,i√∑|P|

i=1(Pu,t,i)2

√∑|P|
i=1(Pu,t−1,i)

2

(7)

Analogously, At,t+1 can be calculated in the same way.

4.3 Model Construction and Learning
Inspired by the above results and the collaborative re-

trieval model introduced in Section 3.3, we formulate our
new model (LTSCR). For a user u, Uu,t ∈ RK denotes his
temporal latent factor. For a POI i, it has three types of
latent factors: 1) Pi ∈ RK captures the transition patterns
between successive check-in POIs. It can be regarded as the
retrieval part in the collaborative retrieval model. Adding
additional user dependent transformation matrix like CRM
for this task does not improve the final results significantly
and increase the computation cost through our experiments.
Thus we leave them out in our approach; 2) Vi ∈ RK models
the preference between users and locations. It can be con-
sidered as the recommendation part in CRM; 3) Ti ∈ R|T |
denotes the popularity of the location changed over time
periods.

Given the above statement, the recommendation ranking
score can be calculated as follows. For a user u, assume
the current POI he is visiting is i and the corresponding
time period is t, which means the input query of user u
is constituted by a POI-time pair (i, t). The preference to
the next candidate POI c he may visit is measured by the
following score function,

f(u, t, i, c) = (1− α− β)PT
i Pc + αUT

u,tVc + βTc,t (8)

where α and β control the relative strength of each part
above and should meet the constraints: α ∈ R+, β ∈ R+,
and α + β ≤ 1. The setting of these two parameters will
be discussed in Section 5.4.2. We should emphasize that we
adopt PT

i Pc instead of PT
i Vc in the above equation as it can

achieve better experimental results. This may be explained
by the fact that the first one can directly learn the transition
patterns from data.

In order to utilize the localized region constraint, we con-
strain the candidate recommendation location c should be
within the grid the user currently stays in (the grid i belongs
to) or its surrounding eight grids, which is the same as [4].
More details about the grid size setting can be referred in
the later dataset preprocessing section.

We incorporate the social regularization term and the
temporal regularization term mentioned before into our new
model for learning from users’ real check-in behaviors by ex-
panding the standard WARP loss function. Given a user
u and his current visiting POI i, we denote his true suc-
cessive visiting POI as c. The learning process should first
sample one negative POI c′ to construct the training pair
(u, t, i, c, c′). Under the localized region constraint, all the
negative POIs should also be within the grid covering i or
its surrounding eight grids. We use Ωtr(u) to denote all the
training pairs related to user u. With this spirit, LTSCR
solves the following learning problem,

min
U,P,V,T

∑
u∈U

∑
Ωtr(u)

L
(
r̃(c)

)
·max

(
0, 1 + f(u, t, i, c′)− f(u, t, i, c)

)
+
σ

2

∑
u∈U

∑
t∈|T |

||Uu,t −
1∑

u′∈S(u) Bu,u′

∑
u′∈S(u)

Bu,u′Uu′,t||2

+
γ

2

∑
u∈U

∑
t∈|T |

At,t−1 ||Uu,t −Uu,t−1 ||2 + At,t+1 ||Uu,t −Uu,t+1 ||2

+
λ

2

∑
i∈P

(
||Vi||2 + ||Pi||2 + ||Ti||2

)
(9)
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where the sampled negative POI c′ for query POI i with
positive POI c in LTSCR should satisfy the margin-based
comparison 1 + f(u, t, i, c′) > f(u, t, i, c). The last terms of
the above optimization target are regularization terms which
control the overfitting problem and are often employed in
latent facor models. The number of sampling step for finding
the adequate negative POI determines the approximate rank
r̃(c) according to Equation 3. σ, γ, and λ are regularization
parameters for the model which can be tuned on validation
datasets.

The SGD algorithm is leveraged to optimize the above
objective function. The central idea of SGD is to randomly
scan all training pairs and update parameters though the
gradient descent direction of the target function for each
training pair. Each update is done by the following equation,

Θ← Θ− η · ∂Obj(Θ)

∂Θ
(10)

where η corresponds to the learning rate. Θ denotes all
model parameters, and Obj denotes the objective function
shown in Equation 9.

Given a training pair (u, t, i, c, c′) from the whole training
data, the key gradients of all related parameters are com-
puted as follows,

∂Obj(Uu,t,k)

∂Uu,t,k
= α(Vc′,k −Vc,k)L

(
r̃(c)

)
+ σ(Uu,t,k −

1∑
u′∈S(u) Bu,u′

∑
u′∈S(u)

Bu,u′Uu′,t,k)

+ γ
(
At,t−1 (Uu,t,k −Uu,t−1,k) + At,t+1 (Uu,t,k −Uu,t+1,k)

)
∂Obj(Pi,k)

∂Pi,k
= (1 − α− β)(Pc′,k −Pc,k)L

(
r̃(c)

)
+ λPi,k

∂Obj(Pc,k)

∂Pc,k
= (1 − α− β)(−Pi,k)L

(
r̃(c)

)
+ λPc,k

∂Obj(Vc,k)

∂Vc,k
= −αUu,t,kL

(
r̃(c)

)
+ λVc,k

∂Obj(Tc,t)

∂Tc,t
= −βL

(
r̃(c)

)
+ λTc,t

(11)

We only list the gradients related to the positive location c.
However, it is easy to derivate the similar gradients related
to the negative location c′. After the gradients are calcu-
lated, we can update the parameters through Equation 10
uniformly. In summary, the complete learning algorithm for
LTSCR is described in Algorithm 1.

5. EXPERIMENTAL STUDY
To demonstrate the effectiveness and efficiency of our pro-

posed models, we conducted experiments on two real datasets.
We first describe the data preprocessing procedure in Sec-
tion 5.1 and then give a simple introduction to the evaluation
metrics we used in this task. We explain all the methods we
compare in the experiments in Section 5.3. Lastly, we com-
pare the results of all methods and analyze the possible rea-
sons. All the algorithms were implemented using C++ and
we conducted all the experiments on a server (four 3.00GHz
CPU cores, 20GB memory) with 64-bit Linux system. In
this paper, we exploit the same ordinary data structures for
all the algorithms and do not consider any parallel compu-
tation.

Algorithm 1: The Learning Algorithm

Input: Training records T R, Social similarities SS,
Temporal similarities T S, Geographical
grids GG

Output: Optimal user factors U, POI factors
W = {P,V,T}.

1 tt=0;
2 Initialize hyper-parameters;
3 Randomly initialize U, P, V, T;
4 while Obj(U,P,V,T) not converged and tt ≤ Tmax

do
5 Randomly shuffle the training records T R;

foreach training record k do
6 Get (u, t, i, c) from record k;
7 Sampling desirable negative POI c′;
8 Compute all gradients through Equation 11;
9 Update model parameters by Equation 10;

10 tt = tt + 1;

5.1 Datasets Preprocessing
We employ two public datasets, i.e., Brightkite and Gowalla

in the experiments, just as mentioned in Section 3.1. As
stated in Section 3.2, we address the problem of successive
POI recommendation problem. When a user specifies a POI
and its corresponding visiting time, the algorithms should
recommend new POIs the user prefers to visit in the near
future. In order to evaluate the results of all methods, we
should extract reasonable successive check-in records from
the same user to simulate the process. In the experiments,
we regard two successive check-ins within T = 2 (hour) as a
valid successive check-in pair. This strategy is similar to [21,
4]. To filter noisy data, we further select users who have at
least 10 records and POIs which have at least 5 records in
all check-in pairs gotten from the previous step. After fin-
ishing the preprocessing, we gain the ultimate experimental
datasets. The details of the two datasets are shown in Ta-
ble 1.

Table 1: Basic Statistics of Location-based Social
Network Data.

Dataset User POI Check-in Pair Edge

Brightkite 4930 14393 126160 64504
Gowalla 34113 146544 1138971 283570

In order to utilize the localized region constraint moti-
vated by the data analysis in Section 3.1, we divide the
geographical space into nearly equally-sized grids whose ar-
eas are 0.05(longitude) × 0.05(latitude), which can include
most successive check-in pairs. We randomly divide the two
datasets into training, validation, and test datasets accord-
ing to the ratio 7 : 1 : 2, meanwhile, assure that each user
and POI occur at least one time in the training data. All
the models are trained on the training datasets and all the
hyper-parameters are tuned on the validation datasets. Fi-
nally, we compare all the models on the test datasets.

5.2 Evaluation Measures
To evaluate the successive POI recommendation results,

we adopt two types of standard evaluation metrics: (1) Pre-
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Figure 4: Impact of Different Settings of α and β.

cision@n (Precision at Position n) and Recall@n (Recall at
Position n), and (2) MRR(Mean Reciprocal Rank).

Precision and recall are mainly used in previous recom-
mendation tasks [21, 4] which relate to our work. Generally,
it is computed by the following formula,

R@n =
Ntr

Nt
, P@n =

Ntr

n
(12)

where Ntr denotes the number of truly recommended items,
and Nt represents the number of total true items.

We should emphasize that for each query POI, the num-
ber of true recommendation results is small for collaborative
retrieval task. Therefore, the precision of results may be
relative low as long as k is not small. That’s also why the
works [21, 9] do not use metric Precision@n. As a comple-
mentary, we adopt MRR metric that concentrates on mea-
suring positions of the first correct recommendation results.
In our problem setting, MRR is calculated as

MRR =
1

|U|

|U|∑
u

1

|Qu|

|Qu|∑
i

1

ranki
(13)

where |Qu| is the number of implicit location queries each
user u has and ranki specifies the position of the first correct
successive POI the user will visit based on the query i.

5.3 Comparison Methods and Components
We adopt the following five methods in the experiments.

Among them, the first two are popularity based methods and
the middle two are model based methods. The main targets
of the experiments are to demonstrate that our proposed
method outperforms these methods.

• POP: Pure popularity based method is simple with
only considering the total check-in count of each POI
for this task. Thus it can be regarded as the baseline
for our later comparisons.

• POP+LR: It briefly extends POP by additional in-
corporating localized region constraint for POI candi-
dates generation. In other words, for each query POI,
the successive POIs to be recommended should have
large total check-in count and meanwhile be located in
its surrounding grids.

• PMF+LR: Probabilistic matrix factorization (PMF)
is a standard approach for recommendation tasks [17],
which can be extended by incorporating distance fac-
tor for traditional POI recommendation task [3]. We
adapt this model to the successive POI recommenda-
tion task by additionally considering localized region

constraint. Thus, it can be treated as a direct adapta-
tion of traditional POI recommendation approach to
successive POI recommendation task.

• FPMC+LR: FPMC+LR is the state-of-the-art method
for successive POI recommendation task [4]. Com-
pared to PMF+LR, it utilizes the users’ current visit-
ing POI information.

• LTSCR: Location and time aware social collaborative
retrieval model is the perfect model we proposed which
integrates social relation, location information, tempo-
ral information with collaborative retrieval framework.
We hope to verify its superiority.

Besides, it is also necessary to verify the effectiveness of
the main components of LTSCR. To achieve this, we adopt
the strategy similar to the forward selection method which
is frequently employed in feature selection task [8]. Specif-
ically, starting from the basic model (FPMC+LR), we add
one more component that we intend to test each time and
compare them in an incremental fashion. Here, we conclude
the two partial methods to be adopted in later comparison
as follows,

• FPMC+LR+S: The approach incorporates social re-
lations into FPMC+LR. If the results show that this
model outperforms FPMC+LR, then it can demon-
strate users indeed prefer to visit POIs that their friends
have visited empirically.

• FPMC+LR+ST: This model further considers tem-
poral information of visiting. We adopt the same way
as LTSCR used to model temporal information. If it
behaves better than the previous method, the benefit
of temporal information is experimentally verified.

Based on the results of the above partial methods of LTSCR,
we can also demonstrate the advantage of utilizing the mer-
its of CRM by comparing LTSCR with FPMC+LR+ST.

5.4 Parameter Settings
In this part, we mainly describe the hyper-parameters we

tuned for LTSCR on the validation datasets. The other
adopted comparison methods are also tuned to ensure to
achieve their good results.

5.4.1 Learning Rate and Factor Dimension
There is a tradeoff between learning speed and conver-

gence guarantee for learning rate setting. Without specific
mention, we set learning rate η to be 0.01 for all models. The
dimension of all latent factors are set to be 20 for Brightkite
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Figure 5: Comparisons of Different Methods on Recall@k, Precision@k, and MRR Metric.

dataset and 40 for Gowalla in our most experiments. This
is inspired by the analysis of dimension influence on recom-
mendation performance in Section 5.5.3.

5.4.2 Tuning of Parameter α and β

As shown in Equation 8, α and β control the relative in-
fluence of different parts on preference score computation.
Here, we determine them based on the performances of Pre-
cision@5 and Recall@5 on validation datasets which coincide
with the recommendation objective. Specifically, we employ
the grid search method to get optimal setting by configur-
ing α and β with different combinations. As Figure 4 shows,
temporal factors of POIs play a minor role in optimal results
compared with the other two parts. The optimal parame-
ter configurations are pointed out in both figures and it is
evident that the variations of results near the optimal point
are relatively smooth. Without loss of generality, we set
α = 0.2, β = 0.1 for Brightkite data and α = 0.4, β = 0 for
Gowalla data, respectively.

5.4.3 Regularization Parameters
The regularization terms λ for all latent factors are set

to be 0.1 across all the models based on the results on vali-
dation dataset after several trials on {10−3, 10−2, · · · , 103}.
It is intuitive that γ and σ should be larger than λ as they
capture additional knowledge to constrain the latent factors.
We experimented many combinations for γ and σ. Exper-
imentally, we find that the results continue to grow slowly
with increase of γ and σ as long as they are larger than 1
and not too large. Empirically, we set them to be 10 which
can ensure good results.

5.5 Experimental Results

5.5.1 Comparison Study
We start with discussing the results reported in Figure 5.

Firstly, we compare the two POI popularity based meth-
ods, i.e., POP with POP+LR. From the table, we can see
that POP+LR performs consistently better than POP in

both datasets. The phenomenon is rational since POP+LR
utilizes the localization property of successive check-ins and
ranks POIs only in local regions.

Then we analyze the results of the basic model based ap-
proach PMF+LR. Actually, we find the results of PMF+LR
shows no improvements over POP+LR’s, except the result
corresponding to MRR metric in Gowalla dataset. Knowl-
edge gotten from the above comparison is two-folds. It re-
flects that PMF+LR is not very suited for the successive POI
recommendation task. Besides, popularity based method is
not very robust when the size of candidate POIs is large as
their performance drops significantly in the large Gowalla
dataset. By comparing FPMC+LR with the above meth-
ods, we can conclude that the incorporation of users’ current
visiting locations is crucial for the successive POI recommen-
dation task. This can be explained by that the current loca-
tion each user stays in can be regarded as an implicit query
which is an indicative for his successive check-in choice.

Finally, we contrast LTSCR with all other models. As
the results show, LTSCR behaves vastly superior to both
PMF+LR and FPMC+LR, which reveals that our proposed
approach improves the state-of-the-art results significantly.
The analysis of the key components of LTSCR is introduced
subsequently. As we mentioned before, for each location
and time aware query, the number of true recommendation
results is small for successive POI recommendation task.
Therefore, the precision of results may be relative low as
long as n in Precision@n is not small. However, the rela-
tive improvements on Precision@n are significant. For ex-
ample, LTSCR achieves 38.3% and 54.9% relative improve-
ments over FPMC+LR on metric Precision@5 for datasets
Brightkite and Gowalla, respectively.

5.5.2 Effectiveness of Main Components
We verify the effectiveness of utilizing social relation, tem-

poral information, and collaborative retrieval framework in
LTSCR through an incremental comparison strategy using
the results shown in Figure 6.
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Figure 6: Performance of Different Components of LTSCR.

First, FPMC+LR+S consistently outperforms FPMC+LR
in the two datasets notably. This indicates the effectiveness
of using social relation for our task. Based on FPMC+LR+S,
FPMC+LR+ST is further provided which is a direct exten-
sion of FPMC+LR+S by incorporating temporal informa-
tion in the model, just as we mentioned in Section 5.3. The
comparison between FPMC+LR+ST and FPMC+LR+S fits
in with our expectation, as FPMC+LR+ST achieves better
results. Thus, considering temporal information can bene-
fit the task. Finally, to demonstrate the superiority of col-
laborative retrieval framework, we make a comparison be-
tween LTSCR and FPMC+LR+ST. As expected, LTSCR
behaves the best among all the methods and outperforms
FPMC+LR+ST.

In summary, through the above incremental comparisons,
we can conclude that the main components we utilized are
suited for the successive POI recommendation task.

5.5.3 Dimension Influence
In this section, we will briefly discuss how the dimension

of latent factors influences the results. We conduct experi-
ments on Precision@5 and Recall@5 on two datasets sepa-
rately with different dimension setting changing from 5 to
100. The results are reported in Figure 8.

Clearly, the variation trend of the results on Brightkite
dataset is not very stable. Although almost all the meth-
ods increase monotonously before reaching dimension 10,
PMF+LR encounters an inflection point at this dimension.
Purely increasing the dimension of latent factors may cause
the overfitting problem, especially on the Brightkite dataset
which is not very large. From a whole perspective, setting
dimension to be 20 for Brightkite is an acceptable choice.

On the other hand, the curves drawn in Figure 8(c) and
8(d) are much clearer to reflect how the change of the di-
mension influences the results on Gowalla dataset. When
the dimension is small, i.e., less than 30, the growth rate
is fast. Then they start to converge after the dimension
surpass 30 and retain pretty stable after 40.

From the two figures, we can also conclude that our pro-
posed method consistently outperforms the other two model-
based approaches, no matter how large the dimension is.

5.5.4 Learning Cost Analysis
Under the SGD learning framework, the total time of

learning for LTSCR is mainly dominated by the cost of each
learning iteration and the number of iterations.
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Figure 7: Time Cost of LTSCR on Gowalla.

In each iteration, the time cost depends on the size of
training instances and learning speed for each instance. As
we introduced in Section 3.3, the sampling process for WARP
loss could only be terminated when a sampled item satisfies
the margin-based comparison. Thus, At the beginning of
learning, the time cost for each instance is small as it is
rapid to sample a negative item which satisfies the require-
ment. As the optimization process proceeds, the time cost
will increase. Theoretically, the maximal number of sam-
pling step for a training pair is |P| − 1. However, when the
optimization converges, the time cost of sampling will also
be bounded. We tested the LTSCR’s learning time cost of
each iteration on the large Gowalla dataset, which has nearly
one million training pairs. As shown in Figure 7(a), when
the time cost reaches a stable state, it is only slightly over
2 times as large as the time cost of the beginning, which is
acceptable for model learning.

9



 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0  10  20  30  40  50  60  70  80  90  100

P
re

c
is

io
n

@
5

Dimension

PMF+LR
FPMC+LR

LTSCR

(a) Precision@5 of Brightkite.

 0.07

 0.08

 0.09

 0.1

 0.11

 0  10  20  30  40  50  60  70  80  90  100

R
e

c
a

ll
@

5

Dimension

PMF+LR
FPMC+LR

LTSCR

(b) Recall@5 of Brightkite.

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  10  20  30  40  50  60  70  80  90  100

P
re

c
is

io
n

@
5

Dimension

PMF+LR
FPMC+LR

LTSCR

(c) Precision@5 of Gowalla.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0  10  20  30  40  50  60  70  80  90  100

R
e

c
a

ll
@

5

Dimension

PMF+LR
FPMC+LR

LTSCR

(d) Recall@5 of Gowalla.

Figure 8: Results with Varying Dimension.

Besides, we tested how the data size affects the time cost of
the learning of LTSCR on the large Gowalla dataset. From
the results shown in Figure 7(b), we can estimate the average
time cost of one iteration grows about linearly with the size
of the dataset.

6. CONCLUSION
In this paper, we have proposed a new latent factor model

called LTSCR for successive POI recommendation task. The
new model not only considers users’ current visiting loca-
tions, temporal information of visiting, social relations, and
the localization of successive check-ins simultaneously, but
also utilizes the merits of collaborative retrieval model. We
validate the model on two real datasets. The experimental
results have shown that 1) social and temporal information
are indeed beneficial for this task, and 2) LTSCR outper-
forms the several other methods.
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