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ABSTRACT
The availability of massive geo-annotated social media data sheds
light on studying human mobility patterns. Among them, periodic
pattern, i.e., an individual visiting a geographical region with some
specific time interval, has been recognized as one of the most im-
portant. Mining periodic patterns has a variety of applications,
such as location prediction, anomaly detection, and location- and
time-aware recommendation. However, it is a challenging task: the
regions of a person and the periods of each region are both un-
known. The interdependency between them makes the task even
harder. Hence, existing methods are far from satisfactory for de-
tecting periodic patterns from the low-sampling and noisy social
media data.

We propose a Bayesian non-parametric model, named Periodic
REgion Detection (PRED), to discover periodic mobility patterns
by jointly modeling the geographical and temporal information.
Our method differs from previous studies in that it is non-parametric
and thus does not require priori knowledge about an individual’s
mobility (e.g., number of regions, period length, region size). Mean-
while, it models the time gap between two consecutive records
rather than the exact visit time, making it less sensitive to data
noise. Extensive experimental results on both synthetic and real-
world datasets show that PRED outperforms the state-of-the-art
methods significantly in four tasks: periodic region discovery, out-
lier movement finding, period detection, and location prediction.

1. INTRODUCTION
The wide availability of geo-annotated social media data, such

as tweets, Foursquare check-ins and Instagram photos, enables us
to discover various mobility patterns [4, 27, 51, 54, 55, 58]. Among
them, periodic mobility pattern has long been considered as one of
the most important. Periodic mobility pattern, loosely defined as
the repeating activities at certain locations with some time inter-
val [27], can be observed virtually on each person. For example, a
person may have breakfast in a region with several coffee houses
every morning. This person may also shop in and then have din-
ner around a supermarket every Friday evening (Figure 1). In such
cases, the coffee house region and the supermarket region are the
two regions where the user exhibits periodic visiting behavior, with
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Figure 1: The historical geo-annotated records of a person

periods of one day and one week, respectively. Discovering pe-
riodic behaviors can help us better understand users’ mobility as
well as enhance an assortment of applications, such as anomaly de-
tection, location prediction, location- and time-aware recommenda-
tion [50]. For example, based on the periodic pattern, we can detect
the person’s show-up in the coffee house region at 11:06 PM as an
unusual movement; we can also anticipate that the person is highly
likely going to visit the supermarket region on Friday evenings, and
recommend a nearby restaurant to her.

However, it is challenging to discover periodic mobility regions
of a user from her social media records, each of which contains
geo-coordinates and time information. The reasons are three-fold.
First, we have only GPS records with time information, but neither
regions nor periods are known. It is difficult to discover which set
of records from a user’s social media should comprise a periodic
region. Second, different users may have different numbers of re-
gions, e.g., a student may have one region at her campus, and a busi-
nessman may have more regions including home, office, shopping
regions. A user may also whimsically visit locations out of regular
regions (geographical irregularity, e.g., the amusement park in Fig-
ure 1). Detecting irregular visits and discovering a proper number
of regions to model an individual’s mobility are non-trivial. Third,
the irregular, low-sampling and short-span natures of social media
data make it difficult to discover periods of regions: i) users usually
do not strictly follow periods, i.e., she might skip one visit or visit
the region at a different time (temporal irregularity, e.g., 11:06 PM
at the coffee house region in Figure 1); ii) a user is unlikely to post
about each activity on social media at every visited location (low-
sampling rate e.g., visits on August 4, 6, and 7 are missing even
if she visits the coffeehouse every morning); iii) the spans of most
users’ records are usually very short, e.g., less than one year.

In this paper, we study the problem of discovering periodic re-
gions of social media users, i.e., the geographical regions which
a user visits periodically. Our goal is to automatically discover
a proper number of regions for each individual as well as asso-
ciated visiting periods. Existing studies, however, cannot address
this task. Some studies [4, 41, 51] assume both the number of a
user’s regions and the period of each region are known in advance,



e.g., each user has two regions with 1 week as the period. Oth-
ers [44, 51] rely on records at venues, i.e., points of interests, but
venue information may not be available in many social media ser-
vices, e.g., Twitter. Li et al. [27] propose to discover regions by
kernel density estimation (KDE), then to estimate the period for
each region by Fast Fourier Transform. However, the separation
of region detection and period estimation hinders this study’s ef-
fectiveness, because this method may cluster records with different
periods into one region, making it difficult to determine periods. In
addition, setting the bandwidth for KDE is still an open question.

To address the challenges, we propose a Bayesian non-parametric
model Periodic REgion Detection (PRED) for users’ periodic mo-
bility modeling, which clusters records with proximate locations
and same periods into a region. Our key observation is, if two
records follow a periodic pattern with a specific period, the gap
time between which should approximately be a multiple of the pe-
riod. For example, the gap time between the person’s visits at the
coffee house on August 3 and 5 is 47.9 hours (Figure 1), approx-
imately doubling the 24-hour period. Thus, instead of modeling
the exact visiting time, we consider the gap time between visits.
Therefore, the low-sampling and short spanning problem is alle-
viated. For example, even though we have only 3 observations in
the supermarket region (Figure 1), we can infer that the period is
1 week based on the gap time (around 1 and 2 weeks). To ex-
ploit temporal information, PRED models the gap time by a Gaus-
sian distributions, where the mean is the estimated periods (e.g.,
24 hours), and the variance allows the fluctuating visiting times.
The temporally irregular visits (e.g., the visit at 11:06 PM) will be
detected and excluded based on its gap time (14.4 hours) between
other visits. Thus, the temporal irregularity problem is mitigated.
To exploit geographical information, PRED models a region by a
bivariant Gaussian distribution over coordinates. As a result, close
coordinates are likely to be clustered. The geographically irregular
visits form isolated regions, and are thus detected. In a nutshell,
PRED jointly exploits geographical and temporal information un-
der the framework of Dirichlet Process, so it is able to automatically
determine the number of regions.

Nevertheless, such a model introduces great difficulty in parame-
ter estimation. From the location perspective, records are indepen-
dent from each other; from the time perspective, they are not. This
is because we model the gap time between records instead of ab-
solute timestamps. The sequential nature of time makes parameter
estimation even more difficult. As a result, conventional parameter
estimation methods such as Markov Chain Monte Carlo (MCMC)
cannot be applied directly. To overcome this difficulty, we propose
a novel estimation method that takes into account the position of a
record in a region’s record sequence.

In summary, our major contributions are outlined as follows:
1. We formulate the problem of discovering periodic regions to

model social media users’ mobility.

2. We propose a novel Bayesian non-parametric model PRED to
describe the periodic behaviors in different regions. PRED jointly
models the geographical and temporal information. It can also
well handle the problems of low-sampling, irregularity and short
spanning. In addition, we develop a novel sampling-based pa-
rameter estimation method for model inference.

3. We conduct experiments on both real and synthetic datasets,
and find that PRED outperforms state-of-the-art methods sig-
nificantly on various tasks.

The organization of the paper is as follows. We first review ex-
isting studies in section 2, and then introduce our PRED model and
its inference method in section 3. The experimental results are pre-
sented in Section 4. In the end, section 5 concludes this paper.

2. RELATED WORK
In this section, we review existing studies on mobility modeling,

location prediction, and periodicity detection.

2.1 Mobility Modeling & Location Prediction
A number of studies have been proposed to model user mobility

behaviors. Brockmann et al. [2] find human mobility behavior can
be approximated by a continuous-time random-walk model with
long-tail distributions. Gonzalez et al. [14] find that users periodi-
cally return to a few previously visited locations, and the mobility
of each user can be modeled by a stochastic process centered at a
fixed point. Cho et al. [4] observe that the mobility of each user is
centered at several regions, and the probability that a user stays at
a region is influenced by time. They propose a generative model,
Periodic Mobility Model (PMM), which predicts a user’s location
by estimating the regions in which a target user most likely stays
at a target time. Tarasov et al. [41] follow this paper and model
a region by radiation model [40]. Isaacman et al. [19] examine
spatiotemporal distributions of people’s call records data to study
people’s mobility at a metropolitan scale. Deb et al. [5] and Zhang
et al. [55] employ the Hidden Markov Model to extract latent se-
mantic locations. Wang et al. [44] propose a hybrid mobility model
that combines regularity and conformity of human mobility. Jiang
et al. model human dynamic behaviors with tensor method [20]
and Minimum Description Length principle [21]. None of these
studies are capable of detecting true periods. In contrast, we focus
on detecting unknown periods and unknown regions in which the
periodic behaviors occur.

Location prediction that aims to predict the geo-location of an
individual at a specific time has attracted much research attention
due to its wide applications in recommendation, targeting adver-
tising [57], etc. Most of existing studies are proposed to predict
the next location of a user given her current location, under the
framework of Hidden Markov Model (HMM) [3,32,48], trajectory
pattern mining [34], Hierarchical Pitman-Yor language model [12],
regression model [36], Factorized Markov Chain [10], Recurrent
Neural Network [30]. However, the periodic mobility behavior en-
ables us to predict the location of a user at any time. Several meth-
ods on this topic have been proposed by employing HMM [38], de-
cision tree [33], topic model [51, 53], radiation model [41], matrix
factorization [29], gravity model [44], and discrete choice model [24],
but they require either social links [38, 41] or venues [24, 29, 33,
38, 44, 51] as the input. The requirements also exist in the studies
on next location prediction [3, 10, 12, 30, 36, 48]. However, social
links of individuals are not always available, and locations are often
represented by geo-coordinates instead of venues (e.g., in Twitter).
PMM [4] and its variation [41] are the most generic approaches to
location prediction, but they assume that users’ visiting periods are
known in advance.

2.2 Periodicity Detection
There has been extensive research work [15, 16, 43, 45, 46] on

mining periodic patterns from sequence data. Han et al. [15, 16]
propose to find the periodic patterns that appear frequently in a
given itemset sequence. Their introduced partial periodic patterns
are later extended in different ways [43, 45, 46]. Despite the inspir-
ing results, these pioneering studies focus on efficiency.

Researchers have also proposed methods for detecting periods
by employing autocorrelation (ACF) [1, 7–9], chisquared test [31],
max subpattern tree [39], suffix tree [37], pattern combination [35],
projection [47], Lomb-Scargle periodogram [13], and the combi-
nation of ACF and FFT [42]. Nevertheless, methods above are
designed for the sequence data with relatively high sampling rate,



Table 1: Symbols
Symbol Description
Du, |Du| record collection of user u, the size of Du

Ru the set of regions of user u
θ multinomial distribution of regions
μr , Σr mean and covariance matrix of Gaussian dis-

tribution over geo-coordinates of region r
νr , σ2

r mean and variance of Gaussian distribution
over time specific to region r

Tr period of region r
di record di = {li, ti}
l geographical coordinates

t, tr,i time point, the ith time point assigned to r
tg(ti, tj) gap time between records di and dj
ei,j time remainder of the gap time tg(ti, tj)
ci,j period count of the gap time tg(ti, tj)
S Observation sequence

α hyper parameter for Chinese Restaurant Pro-
cess

υ0, κ0, ρ0, Ψ0 Normal-Wishart prior for μr and Σr

ε0, λ0, τ0, ψ0 Normal-Gamma prior for νr and σr

β spatial noise rate
γ temporal noise rate
δ sampling rate
n number of period segments in the observations

instead of low-sampling social media data. Li et al. [28] study to
find periodicity from sequences that have incomplete observations.
The key idea is to segment the time series into small chunks and
overlay them based on each candidate period. However, to gener-
ate sufficient statistics it requires a long-time series that may not
hold in social media data.

To the best of our knowledge, there is only one study that tries
to discover periodic regions along with the periodic behaviors [27].
They first perform KDE to detect a number of regions. Then for
each region, they combine FFT and ACF to detect the underlying
periodic behaviors. As time is not considered when detecting re-
gions, many noise records or even records with different periods
are clustered, making it difficult to detect periods. In contrast, our
method jointly models the spatial and temporal observations, and
takes into account the gap time to address data sparsity problem.

3. PROPOSED MODEL
We first formulate the problem of periodic regions discovery, and

then describe PRED model and its parameter estimation method.
Finally we introduce its application on user location prediction. Ta-
ble 1 lists all the notations used in this paper.

3.1 Problem Statement
Let Du be the collection of records of user u, and each record

di ∈ Du is a 2-tuple di = {li, ti}, where li and ti represent the
geographical coordinates and posting time of di, respectively. A
user u has a periodic visiting behavior at a region r with period T
if u is likely to visit r every T hours. Here regions are a set of ge-
ographical clusters within which most records in Du are observed.

Given Du, our goal is to find (1) a set of geographical regions Ru

at which user u has periodic visiting behavior, and (2) the period
Tr associated with each region r ∈ Ru.

3.2 Periodic Region Detection Model
We build our Periodic Region Detection Model based on the fol-

lowing intuitions:

Table 2: Time Example
ID time exact time gap rmdr. ct.
d1 D1 8:30 AM 8.50 – – –
d2 D2 8:15 AM 32.25 23.75 23.75 1
d3 D3 8:36 AM 56.60 24.35 24.35 1
d4 D5 8:30 AM 104.50 47.90 23.90 2
d5 D8 8:42 AM 176.70 72.20 24.20 3

1. A user’s mobility centers at several personal geographical re-
gions, e.g., home region, shopping region, working region, etc.,
and the user tends to visit places within these regions.

2. A region may have a visiting period, e.g., 1 week for shopping
regions, and 1 day for dining regions.

3. If a region has a periodic visiting pattern, the gap time between
its consecutive visiting records should approximate to a multiple
of its period.

Note that we can always get a visiting period for a region even
if there is no periodic visiting behavior on it, but the detected peri-
ods will be very large, and the supports will be small. Thus, such
regions are not supposed to have periodic visiting patterns. Follow-
ing the settings of previous studies [4, 27], we assume each region
has only one visiting period (if there are multiple periods, the over-
all period will be their least common multiple). This suggests that
the geographical and temporal information can cooperate for re-
gion discovery. In fact, we believe it is important to exploit spatial
and temporal information jointly. On the one hand, if we discover
regions first based on the geo-coordinates only, it is difficult to es-
timate the periods if two regions are close in distance but have dif-
ferent periods; on the other hand, if we only consider time in the
first step, it is hard to detect all possible periods because all periods
are interleaving with each other, mixed with noise.

How to determine the number of personal regions is a crucial
problem. Most existing topic model based studies assume all users
share the number of regions, and the region number is known [4,17,
49, 51]. In real world, however, different users may have different
numbers of regions, and it is difficult to tell the numbers in advance.
For example, a student may have only one region (campus), but a
white collar may have more regions for working, dining, shopping,
etc. Although kernel based method [27] can detect regions from
data, how to set kernel bandwidths and how to determine threshold
to filter noise remain unsolved.

In this paper, we utilize the Dirichlet Process to generate the re-
gions. A well-known metaphor is the Chinese Restaurant Process
(CRP), a stochastic process in which customers select seats at a
restaurant with an infinite number of tables. The first customer ran-
domly selects a table to sit, while the other customers can either sit
at a new table or select an occupied table with probability propor-
tional to prior α and the number of customers at an occupied table,
respectively. We employ CRP to cluster records into regions, which
can automatically estimate the number of regions. From the geo-
graphical perspective, a region r is modeled by a bivariant Gaus-
sian over the latitude and longitude coordinates, parameterized by
the mean vector μr and covariance matrix Σr . The probability that
region r generates location l is:

P (l|r) = N (l|μr,Σr) (1)

It is more complicated to model time. Most existing studies [4,
51] assume the visiting period of a place is known, e.g., 24 hours,
and use Gaussian distribution to model the visiting time within each
periodic segment. However, such methods are not able to estimate
the actual periods. Thus, if the defined period is not true (e.g.,
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Figure 2: Graphical Model

1 week for shopping region), these methods will make mistakes
(predict that the user will go shopping every day).

In this paper, instead of modeling the exact visiting time, we
model the gap time between consecutive records. Our key insight
is, if there is a periodic visiting pattern, the gap time between every
pair of consecutive records should approximate to a multiple of its
period. To see this, recall the person who always visits a coffee-
house region at 8:30 AM everyday (records are shown in Table 2).
Obviously, the period is 24 hours. If the user rigorously goes to the
coffeehouse every morning and reports her visits (e.g., d1, d2 and
d3 for day 1 to day 3), and the gap time (gap) are around 24 hours.
However, if some records are missing (day 4, 6 and 7), the gap
time (47.90 and 72.20) does not center around the period any more.
Nevertheless, if we divide the gap time by the period (24 hours),
the remainders (rmdr.) fall around the period again. This suggests
us to exploit the gap time to model the periodic time pattern.

Specifically, we define the remainder ei,j of the gap time tg(ti, tj)
between records di and dj divided by the period T as follows:

ei,j =

{
mod(tg(ti, tj), T ) mod(tg(ti, tj), T ) > T/2,

mod(tg(ti, tj), T ) + T otherwise.
(2)

Then suppose a user u visited region r at time t1, t2, ..., th with
period T , the probability that u will visit r at time ti is as follows:

P (ti|r) = N (eh,i|νr, σ2
r), (3)

where νr and σ2
r are the mean and variance of the univariate Gaus-

sian distribution for time.
In summary, the generative process is illustrated in Algorithm 1,

and the graphical model is shown in Figure 2.

3.3 Parameter Estimation
The total likelihood of full observation of Du is:

P (l, t, r|α, υ0, κ0, ρ0,Ψ0, ε0, λ0, τ0, ψ0)

=

∫
P (r|θ)P (θ|α)dθ ·∫
P (l|μ,Σ)P (μ,Σ|υ0, κ0, ρ0,Ψ0)dμdΣ ·∫
P (t|ν,σ)P (ν,σ|ε0, λ0, τ0, ψ0)dνdσ (4)

We employ collapsed Gibbs sampling to obtain samples of the

hidden variable assignments r = {ri}|Du|
i=1 , and to estimate the

unknown parameters {θ,μ,Σ,ν,σ}.
Based on Equation 4, we derive the updating equation for region

ri for record di as follows:

Algorithm 1: Generative Process

for the record di ∈ Du do
Draw a region ri based on CRP (r|α);
if ri /∈ Ru then

Draw geographical distribution
N (μri,Σri) ∼ Normal-Wishart(υ0, κ0,ρ0, ζ0);

Draw periodic pattern
N (νri, σri) ∼ Normal-Gamma(ε0, λ0, τ0, ζ0);

Add ri into Ru;

Draw a location li ∼ N (l|μri,Σri);

Draw a time ti ∼ N (mod(t, t′, νr)|νr, σ2
r);

P (ri = r|r¬i, .) ∝ P (r|θ¬i) · P (li|μr,¬i,Σr,¬i) ·
P (ti|νr,¬i, σr,¬i) (5)

θ¬i, μr,¬i, Σr,¬i, νr,¬i, σr,¬i are parameters after excluding di.
The first part of the right hand side of Equation 5 follows the

Chinese restaurant process:

P (r|θ¬i) =

⎧⎪⎪⎨
⎪⎪⎩

α∑
r′∈Ru

nr′,¬i

if r /∈ Ru

nr,¬i∑
r′∈Ru

nr′,¬i

if r ∈ Ru

(6)

nr,¬i is the number of records assigned to r after excluding di.
The second part is the posterior predictive probability of li being

generated by region r after excluding di. Since the location dis-
tribution is modeled by bivariant Gaussian, the posterior predictive
follows the bivariant student t-distribution:

tρ−1(μr,¬i,
Ψr,¬i(κ+ 1)

κ(ρ− 1)
), (7)

where μr,¬i =
κυ + nr,¬ilr,¬i

κ+ nr,¬i
, κ = κ0 + nr,¬i, ρ = ρ0 + nr,¬i

Ψr,¬i = Ψ0 +
∑

l∈lr,¬i

(l − lr,¬i)(l − lr,¬i)
T +

κnr,¬i(υ0 − lr,¬i)(υ0 − lr,¬i)
T

κ+ nr,¬i

Here lr,¬i and lr,¬i are the mean coordinates and the set of all
coordinates of records assigned to region r after excluding di, re-
spectively. The derivations are omitted due to limited space. More
details can be found in [22].

The third part of Equation 5 is the posterior predictive probabil-
ity of ti being generated by region r after excluding di. However,
compared with the second part, it is much more difficult to get the
closed form of the third part, because di is not independent from
other records given that the temporal Gaussian distribution is de-
fined in terms of gap time instead of time points.

We need to consider the change of gap time of region rdi when
we remove di from it, where rdi is the region assigned to di before
sampling. As time is a sequential variable, we first find the time
points ti′ and ti′′ that are precedent and consecutive to ti in rdi
(Figure 3). If ti is the first time point in rdi , excluding di will result
in removing the gap time tg(ti, ti′′) (Figure 3 (a)). Similarly, if ti
is the last time point in rdi , excluding di will lead to the removal of
gap time tg(ti′ , ti) (Figure 3 (b)). If ti is in the middle of the time
sequence, after removing di, both tg(ti′ , ti) and tg(ti, ti′′) will be
deleted. In addition, as ti′ and ti′′ become consecutive, a new gap
time tg(ti′ , ti′′) will be added (Figure 3 (c)). Now, we re-estimate
the parameters for the temporal Gaussian model for the sampling
based on the remaining gap time.
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Figure 3: Inserting and deleting ti. Dashed lines (gap time) are
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When calculating the posterior predictive probability for ti, we
are actually calculating how likely ti can be inserted into region
r. Similarly, when deleting di, if ti is at the boundary of r’s time
sequence, we just add one gap time, i.e., tg(ti′ , ti) or tg(ti, ti′′)
(Figure 3(e) and (f)). If ti is in the middle of the time sequence of
r, two new gap time tg(ti′ , ti) and tg(ti, ti′′) will be added, and
the gap time tg(ti′ , ti′′) will be removed (Figure 3 (f)).

Since temporal pattern is defined as Gaussian distribution over
gap time, given a region r, the posterior predictive of adding or
deleting a gap time with remainder e follows the student t-distribution:

t2τ (e|νr, ψr(λ+ 1)

τλ
), (8)

where νr =
λε0 + (nr − 1)er

λ+ nr − 1
, λ = λ0 + nr − 1, τ = τ0 +

nr − 1

2

ψr = ψ0 +
1

2

∑
e′∈er

(e′ − er)
2 +

λ0(nr − 1)(er − ε0)2

2(λ0 + nr − 1)

Based on the above analysis, we derive the third part of Equa-
tion 5:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t2τ (ei,i′′ |νr,¬i,
ψr,¬i(λ+ 1)

τλ
) if ti < tr,0

t2τ (ei′,i|νr,¬i,
ψr,¬i(λ+ 1)

τλ
) if ti > tr,nr,¬i

t2τ (ei′,i|νr,¬i,
ψr,¬i(λ+ 1)

τλ
) · t2τ (ei,i′′ |νr,¬i,

ψr,¬i(λ+ 1)

τλ
)

/t2τ (ei′,i′′ |νr,¬i,
ψr,¬i(λ+ 1)

τλ
) otherwise

Here er,¬i and er,¬i are the average time remainders and the
set of all time remainders assigned to region r after excluding di,
respectively. tr,k is the kth time point in region r.

However, after each sampling iteration, νr is not the period of re-
gion r, because it is estimated based on time reminders, but the time
remainders are calculated based on the νr in last sampling steps. To
address this problem, we need to turn to the period count (ct.) ci,j
of the gap time tg(ti, tj) between records di and dj divided by ν:

ci,j =
tg(ti, tj)− ei,j + ν

ν
(9)

Different count values c correspond to different potential peri-
ods cν. Recall the example in Table 2. Suppose in current itera-
tion, ν′

r is 8. Then the count 3 appears twice (corresponds to the
gap time 23.75 and 24.35), and the counts 6 and 9 appears 6 and
9 times, respectively (corresponds to gap time 47.90 and 72.20).
The three count values correspond to three νr values, namely, 24
(3ν′

r), 48 (6ν′
r), and 72 (9ν′

r) hours. Intuitively, the best νr should
have smaller variance value in terms of its remainders, and its cor-
responding count should appear more times. Thus, we select νr =

cν′
r with the smallest score

∑
e∈er

(e−νr)2

|er|−1

#c
, where e is calculated

with T = νr , and #c is the number of times count c appears. For
example, the scores for νr = 24, 48, and 96 are 0.0391, 563.278,
and 579.278, respectively. Thus, 24 is the optimal value for νr .

Based on the sampling results, we can calculate the unknown
parameters as follows:

θ̂r =
nr + α/Ru∑

r′ nr′ + α
, Tr = ν̂r = νr

σ̂2
r =

σ2
r

τ
, μ̂r = μr, Σ̂r =

Σr

ρ
(10)

3.4 Location Prediction
The detection of a user’s periodic regions enables us to predict

her location in the future. Specifically, given a target user u, her
records Du, and a target time t, we can calculate the probability
pr of each region r based on Equation 5 without excluding any
record. Then, we use the mean μ̂r of the region r that has the
greatest probability as the predicted location. Another way is to
build a Gaussian Mixture Model for each target time based on the

estimated {pr}|Ru|
r=1 , {μ̂r}|Ru|

r=1 , and {̂Σr}|Ru|
r=1 , and sample a coor-

dinate pair as the prediction results. We tried both methods, and
found their performance is similar.
Remarks: Our model is robust to noise. For the spatial noise, i.e.,
the user’s visits at locations out of her regularly visited regions, our
model can simply detect and exclude them as new (noise) regions
because they are less likely to be generated by the geographical
Gaussian distributions of existing regions. It is more complicated
to deal with temporal noise, i.e., the user’s visits within regularly
visited regions but the visiting time is different. Recall the exam-
ple in Table 2. Suppose the person visited the coffee house again
at 11:06 PM on day 8 (denoted by record d6). Then the time gap
between d5 and d6 is 14.4 hour. At the beginning, our model does
not know this is an irregular visit, and thus takes this visit into con-
sideration when estimating ν. Suppose the newly estimated ν is 20
hour. Given ν = 20, the remainders of the gaps between records
d1 to d5 are around 24. Thus, after several iterations, ν becomes
closer to 24, and the probability that the corresponding Gaussian
distribution generates the gap between d5 and d6 becomes smaller.
In this end, d6 will be excluded from the region as noise.

We assume there is only one visiting peak in each period. How-
ever, for some regions there might be more than one peak. For
example, the visiting records at home may center at the peaks 7:00
AM and 9:00 PM. In such a case, two regions will be detected,
which share similar geographical coverage and the same period,
but the visiting time are different: One corresponds to 7:00 AM;
the other corresponds to 9:00 PM. It is desirable to merge such re-
gions into one. To achieve this, we can employ many metrics to
measure the proximity between the geographical Gaussian densi-
ties of two regions with the same period, such as Kullback-Leibler
Distance, Earth Movers Distance [26], Normalized L2 Distance,
and normalized cross-likelihood ratio (NCLR) [25]. We will leave
this for future work, even though our current simplified model can
achieve good results on real-world datasets (Section 4).

4. EXPERIMENTS
In this section, we first evaluate PRED on synthetic datasets un-

der different scenarios, and then examine its effectiveness in loca-
tion prediction. In the end, we provide two case studies to illustrate
the results of PRED model1.

1The data and code are available at http://www.quan-yuan.com/
datacode.html



4.1 Periodicity Detection on Time Series Data

4.1.1 Experimental Settings
Data Generation: We generate synthetic datasets by a set of pa-
rameters, and use the datasets with known periods to test the effec-
tiveness of the proposed method under different scenarios. The
datasets are generated as follows [28]: (1) fix a period T (e.g.,
24) and the center of visiting time t (e.g., 12). The visiting time
within each period ti around t is modeled by a decay function
P (ti) = exp(−tg(t, ti)) [6, 52]. (2) set N = nT as the length
of the time series. (3) sample the time sequence with sampling
rate δ, i.e., the record in each period segment can be observed with
probability δ. (4) with temporal noise rate γ, the record within a pe-
riod segment is generated randomly (i.e., uniformly sampled). The
default values are: T = 50, t = 0, n = 300, δ = 0.1, γ = 0.1.
Methods for Comparison:
• Fast Fourier Transform (FFT): We employ discrete Fourier

transform to find the spectral with the highest power, and use its
corresponding period as the result.

• Autocorrelation and Fourier Transform (Auto): We first cal-
culate the auto-correlation of the time series, and then use FFT
to select the period with the highest power as the result.

• Auto-correlation and Fourier Transform (Periodogram) [27].
We first apply Fourier Transform to the time series and iden-
tify the range of candidate periods corresponding to the greatest
power. Then for each period range given by the periodogram,
we test whether there is a peak within it. If there is a peak, we
return the location of the peak as the result.

• Discrepancy-based method (Discrepancy) [28]. We calculate
the discrepancy score for each candidate period, which mea-
sures to which extant the records concentrate on a set of time
points if we segment the records based on the period and over-
lay them together. The period with the largest discrepancy score
is output as the result.

• Period Detection (PD). Our proposed method without consid-
ering spatial information.

Since all these baselines are designed for discrete time series, and
the ground truth periods T are integers, in order to make a fair
comparison, we round the outputs of our method to integers. The
default values of our hyper-parameters are set as follows: α = 0.1,
ε0 = 24, λ0 = 0.01, τ0 = 0.5, ψ0 = 0.1. The parameters of
baselines are set to be their suggested values.
Evaluation Metric: Given a sequence of time records, we are in-
terested in how well a method can discover its period. For each
parameter setting, we repeat the experiment for 100 times, and re-
port accuracy, i.e., the percentage of correct period detections over
100 trials. For our method, we report the period with the maximum
number of records as the prediction.

4.1.2 Performance Study
We are interested in the performance of methods on the datasets

generated by different combinations of parameters. Specifically,
for each time, we vary the value of a parameter, and fix the values
of the others at their default values. The accuracies of methods are
plotted in Figure 4.

Figure 4 shows, with the decrease of noise rate γ and the increase
of repetition number n and sampling rate δ, all methods generally
achieve better results for periodicity detection. Among the base-
lines, the performance of some baselines, e.g., FFT, is poor. The
performance of other baselines, e.g., Auto, and Discrepancy can
achieve good results only when the data sequence is of high quality,
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Figure 4: Comparison Results with Various Data Generation
Parameter Settings

e.g., large number of repetition n and high sampling rate δ. The ac-
curacy curves of FFT fluctuate severely when varying n or T , prob-
ably due to the spectral leakage problem. In contrast, the curves
of Auto is more stable because it generates a smoothed version
of data for Fourier transform. Discrepancy is sensitive to period
length T : with the increase of T , the performance of Discrepancy
drops dramatically. Potential reason is the score of the randomized
sequences penalizes large periods (see [28] for details).

Among all methods compared, our method PD outperforms base-
lines under various settings of parameters even when the noise rate
γ is large, the number of repetition n is small, and low sampling
rate δ is small and the period length T is large. This is because
we model the gap time between records rather than the exact time,
resulting in better robustness under various sampling rates, period
lengths, and repetition numbers. The irregular time form isolated
Gaussian components and are thus detected, so our model is less
sensitive to high noise rate.

We are also interested in whether PD is sensitive to the hyper-
parameters. As shown in Figure 5, the performance is relatively
stable. The only exception is ε0: when ε0 is greater than the period,
PD will work badly. This is because ε0 controls the initial period of
PD. When the period is small, we can increase it by multiplying by
the count #c, but when the period is too large, it would be difficult
to reduce it. In practice, we can use a small value, e.g., 20, as ε0.

4.2 Periodic Region Detection on Spatiotem-
poral Data

4.2.1 Experimental Settings
Data Generation: We generate synthetic datasets by a set of pa-
rameters as follows [27,28]: (1) fix the number of region R, and for
each region r ∈ R we generate its distribution over geo-coordinates.
In this paper, we use Cauchy distribution, a well-known Levy Flight
distribution [23], as the geographical distribution. For each Cauchy
distribution, we sample its mean coordinates by uniform distribu-
tion over a 10*10 map, and randomly generate a value smaller than
1 as its scale parameter. (2) For each region, randomly generate
a period between 30 and 100. (3) Set N = nTmax as the maxi-
mum time in the time series, where Tmax is the largest period of
all regions. (4) For each period segment of each region r, gener-
ate a spatiotemporal record d with the probability δ. (5) With the
probability of (1−β), the coordinates of d are generated according
to their geographical distribution, otherwise a random coordinates
are selected based on the uniform distribution over the map (spa-
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Figure 5: Parameter Influence on Period Identification

tial noise). (6) If d is not a spatial noise, with the probability of
(1 − γ), generate a time for it based on r’s temporal distribution
(See Section 4.1), otherwise a random time is selected. The time
for all records with spatial noise is also randomly selected. The de-
fault values of R and β are 3 and 0.1, respectively. Other parameter
values remain the same as in Section 4.1.
Methods for Comparison:

• Periodica [27]: We first extract regions by kernel density es-
timation (KDE), and then estimate the period for each region
using Periodogram, which has been evaluated in Section 4.1.

• KernelDiscp: As Periodogram is not effective in handling time
sequence with large noise rate, to make a fair comparison we
still use KDE to extract regions, but use the method Discrepancy
to extract period.

• Periodic Region Detection Separate (PREDsep). To test the
effectiveness of jointly modeling spatial and temporal informa-
tion, we introduce a new baseline which first extracts regions
using CRP and then identifies the period using PD. Different
from PRED, PREDsep does not exploit spatial and temporal in-
formation jointly.

• Periodic Region Detection (PRED). Our proposed method.

Same as before, the parameters of baselines are set at their sug-
gested values. We set the default values of our hyper-parameters as
follows: κ0 = 0.01, ρ0 = 2, υ0 and Ψ0 are set using the mean
and covariance matrix of the record coordinates of the user, respec-
tively. For PRED, we first disregard time and run 100 iterations on
geographic locations to discover initial regions, and then run an-
other 500 iterations on both locations and time to discover periodic
regions. We discard regions with less than 10 assigned records, or
with period greater than the threshold 100 as noise.
Tasks & Evaluation Metric:

• Periodic Region Detection. We check whether a method can
correctly identify the regions and their according periods. A
detected region is correct if it shares the same period with its
nearest true region, where the distance between regions are de-
fined using L-2 distance. We use F-1 as the evaluation metric.

• Outlier Visit Detection. Recall that in our generated records,
some are irregular (spatial or temporal). We are interested to
test whether a method can correctly detect a visit is irregular.
A record is regarded as irregular if it is associated with a noise
region (PREDSep and PRED) or associated with no region (Pe-
riodica and KernelDiscp). We use F-1 as the evaluation metric.

• Period Detection for Records. When generating the datasets,
we know the corresponding period of each record. A good
method should be able to detect the period to which a record
belongs to. We use accuracy as the evaluation metric.

4.2.2 Performance Study
We evaluate the performance of all methods under different set-

tings of parameters for all three tasks, and plot the results in Fig-
ure 6. We observe that all methods will generate better results when
the data is of better quality, i.e., lower spatial noise rate β, lower
temporal noise rate γ, greater sampling rate δ, larger number of
period repetition n, and smaller number of regions R.

For region detection (Figures 6(a) to 6(e)), the performance of
Periodica is always the worst, followed by KernelDiscp. The ge-
ographical regions extracted by the two methods are the same, but
since the period detection algorithm of KernelDiscp is more effec-
tive in handling time series data with large noise rate, KernelDiscp
can better find the periods for the extracted regions. Same with Pe-
riodica and KernelDiscp, PREDsep first detects regions and then
estimates period for each of them. However, comparing with the
two baselines, PREDsep achieves better performance. The reasons
are two-fold: from the spatial perspective, PREDsep can automati-
cally detect a proper number of regions, while the regions detected
by Periodica and KernelDiscp rely on the bandwidth of Kernel den-
sity estimation greatly; from the temporal perspective, our period-
icity detection method is less sensitive to small sampling rate and
repetition number, as well as large noise ratio and period length.
Comparing with PREDsep, PRED always generates superior re-
sults, because it exploits spatial and temporal information jointly
when extracting periodic regions.

For outlier detection (Figures 6(f) to 6(j)), there are only three
curves, because Periodica and KernelDiscp always generate the
same results and thus their curves overlap with each other. Sim-
ilarly as above, our method PRED performs much better than the
baselines. It is interesting to observe that with the increase of noise
rate β and γ, the performance of different methods doesn’t drop
obviously. This is because the number of noise records also grows.
Thus, we only make comparison under the same noise rate.

For the task of period detection for records (Figures 6(k) to 6(o)),
we still observe that PRED performs the best, followed by PRED-
sep. In contrast, Periodica and KernelDiscp are less effective in
predicting the period for records.

In summary, our proposed method PRED always generates the
superior results. Potential reasons are two-fold: (1) the Dirich-
let process is able to correctly identify the regions; and (2) jointly
modeling location and time can help improve the effectiveness of
periodic region detection.

Figure 7 shows the performance of PRED and PREDsep in re-
gion detection under different settings of hyper-parameters. The
performance in other tasks share similar trends and thus are omit-
ted due to space limit. We can find that the influence of hyper-
parameters is limited, and PRED always outperforms PDsep.

4.3 Location Prediction on Social Media Data

4.3.1 Experimental Settings
Dataset and Evaluation Metric: We use Gowalla check-ins

(Gowalla) and Tweets (Twitter) as two datasets for location pre-
diction, i.e., to predict the coordinates of a target user at a target
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Figure 6: Comparison Results with Various Geo Parameter Settings
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time. We extract Gowalla dataset from the data published by Cho
et al. [4], and collect the geo-annotated tweets from the most re-
cent 3,200 tweets of Twitter users. For each check-in and tweet, we
map it to its corresponding city by reverse geo-coding, and retain
the check-ins and tweets posted within the most frequently visited
city of each user. Users who have at least 70 records are kept in
datasets (each user must have more than 10 records on each day
in [4], but most users cannot meet this requirement). For Gowalla,
we sort users based on ID and keep the first 550 valid users, and
for Twitter, we randomly selected 550 valid users. In the end, the
average number of records of a user is 331.67 and 663.86, and the
average sampling rate is 0.057 and 0.049 in Gowalla and Twitter,
respectively. For each user, we use the first 90% of her records to
build models, and use the remaining records to test the prediction
performance. The effectiveness is measured by Macro (averaged
by users) and Micro (averaged by test instances) Error distance
(Dis) [51], which is the Euclidean distance between the true and
predicted location of a testing record.
Methods for Comparison We use PMM [4] as one baseline be-
cause it is the most relevant method that can predict location at any
time on GPS coordinates data without requiring social information.
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Figure 8: Location Prediction Error Distance

In PMM, we build two GMMs for weekdays and weekends respec-
tively instead of one GMM for each day, because the performance
of the latter is worse. We use KernelDiscp as another baseline,
which can find the active timeslot in a period, and has much better
effectiveness than its original version Periodica [27]. Specifically,
after training the model, we know the weight P (r) and period Tr

of each region r, and also know the weight Pr(i) of each times-
lot i ∈ [0, Tr]. Given a test instance d with time t, we select the
region r that can maximize P (r)Pr(t%Tr), and return its center
of mass as the result. There are many other methods on location
prediction [24, 29, 33, 38, 44, 51]. We do not compare with them
because they require venue information that is often not available
in social networks like Twitter. Since PMM is one of the baselines
already, we do not further compare with its variation [41]. We set
the prior of period ε0 in our model PRED to be 50 in this section
for the purpose of fair comparison, while other parameters remain
the same in Sections 4.1 and 4.2.

4.3.2 Performance Study
Figure 8 plots the macro and micro error distance of different

methods on two datasets. We can observe that the error distance of
PMM is large, probably because (1) two regions are not sufficient
to model a user’s mobility, and (2) a user may have mobility peri-
ods other than 1 week. KernelDiscp, which can discover various
number of regions and their corresponding periods, generates bet-
ter performance on Gowalla. However, its performance on Twitt-
ter is worse. This is because in Twitter data, each user has much
more records. Since KernelDiscp does not consider time when dis-
covering regions, it is more likely to group records with diverse
periods into one region, making it difficult to estimate the correct
region periods for location prediction. Our model PRED outper-
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Figure 9: Error Distance on Different User Groups
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Figure 10: Error Distance under Different Temporal Hyper-parameters

 2

 2.6

 3.2

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

D
is

(a) κ0

 2

 2.6

 3.2

2 3 4 5 6 7 8 9 10

D
is

(b) ρ0

Figure 11: Error Distance under Different Spatial Hyper-
parameters

forms the baselines significantly on both datasets in both metrics
(e.g., the Micro Error Distance of PRED on Twitter is only 36.30%
and 23.09% of that of PMM and KernelDiscp, respectively), ow-
ing to that we jointly model spatial and temporal information and
detect regions and periods simultaneously.

We are also interested in whether one method can perform well
even for users with few records. Thus, for each dataset, we divide
users into 10 groups based on their record count N , and plot their
respective error distance in Figure 9. We find that KernelDiscp
performs worse for users with more records, which is in accordance
with our previous observations on Twitter data. Comparing with the
baselines, our model consistently achieves superior performance
for users with different number of records.

We plot the error distance of PRED under different parameter
settings in Figures 10 and 11. We find that PRED is not sensitive
to the hyper-parameters, even for ε0. Potential reason is the true
periods in real-world data are often greater than 50.

4.4 Case Study
We use two cases to illustrate the results of the proposed PRED

model. Figure 12(a) plots the synthetically generated dataset, in
which there are three regions r1, r2 and r3. Among them, r1 and
r2 are close to each other, and the records of r3 are scattered over a
large area. The periods of the three regions are 30, 51, 82, respec-
tively. On this dataset, the kernel density estimated based methods
Periodica and KernelDiscp treat r1 and r2 as a single region. In ad-
dition, they cannot detect r3 because of its low density. As a result,
these two baselines cannot detect the correct periodic regions. In
contrast, our proposed model PRED is able to extract the regions
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Figure 12: Case Study

and detect their corresponding periods, because it jointly exploits
spatial and temporal information.

We also train the PRED model on the records of a randomly se-
lected Twitter user. PRED discovers 4 periodic regions with period
24 hours (1 day), and 1 region with period 168 hours (1 week).
Since the distances among the 4 regions with period 24 hours are
small, we combine them as a new region. We plot the contours of
the two periodic regions in Figure 12(b), where region r1 has pe-
riod 24 hours, and region r2 has period 168 hours. This case study
shows that our proposed method PRED is effective in discovering
periodic regions from geo-annotated social media records.

5. CONCLUSION
In this paper, we studied the novel problem of extracting periodic

mobility patterns from the noisy and incomplete social media data,
and proposed a Bayesian non-parametric method that jointly mod-
els geographical and temporal information. Different from exist-
ing work, our method does not need a-prior knowledge about user
mobility and is robust to noise by modeling the time gap between
records instead of exact visiting time. Our extensive experiments
on both synthetic and real-world data show that our model outper-
forms the state-of-the-art methods significantly. In the future, it is
interesting to use the extracted periodic patterns to improve other
important location-based applications, such as location recommen-
dation [18, 29, 57] and local event detection [11, 56].
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