
Model-based Clustering of Short Text Streams
Jianhua Yin

School of Computer Science and
Technology, Shandong University

jhyin@sdu.edu.cn

Daren Chao
School of Computer Science and
Technology, Shandong University

drchao@mail.sdu.edu.cn

Zhongkun Liu
School of Computer Science and
Technology, Shandong University

zkliu@mail.sdu.edu.cn

Wei Zhang∗
Shanghai Key Laboratory of
Trustworthy Computing

East China Normal University
zhangwei.thu2011@gmail.com

Xiaohui Yu
School of Computer Science and
Technology, Shandong University

xhy@sdu.edu.cn

Jianyong Wang
Department of Computer Science and
Technology, Tsinghua University

jianyong@tsinghua.edu.cn

ABSTRACT
Short text stream clustering has become an increasingly important
problem due to the explosive growth of short text in diverse social
medias. In this paper, we propose a model-based short text stream
clustering algorithm (MStream) which can deal with the concept
drift problem and sparsity problem naturally. The MStream algo-
rithm can achieve state-of-the-art performance with only one pass
of the stream, and can have even better performance when we allow
multiple iterations of each batch. We further propose an improved
algorithm of MStreamwith forgetting rules called MStreamF, which
can efficiently delete outdated documents by deleting clusters of
outdated batches. Our extensive experimental study shows that
MStream and MStreamF can achieve better performance than three
baselines on several real datasets.

CCS CONCEPTS
• Information systems → Data stream mining; Clustering;

KEYWORDS
Text Stream Clustering; Mixture Model; Dirichlet Process
ACM Reference Format:
Jianhua Yin, Daren Chao, Zhongkun Liu, Wei Zhang, Xiaohui Yu, and Jiany-
ong Wang. 2018. Model-based Clustering of Short Text Streams. In KDD ’18:
The 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, August 19–23, 2018, London, United Kingdom. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3219819.3220094

1 INTRODUCTION
Short text streams like microblog posts are popular on the Internet
and often form clusters around real life events or stories. The task
of clustering short text streams is to group documents into clusters
as they arrive in a temporal sequence, which has many applications
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220094

such as search result diversification, event detection and tracking,
and text summarization [1, 24]. The short text stream clustering
problem has the following challenges: (1) The sparsity of short
text. (2) The documents arrive continuously, causing that storing
all documents and iterating multiple times like static text cluster-
ing methods are impossible. (3) The topics of the text stream may
continuously evolve over time, so we need to detect new clusters
and remove outdated clusters automatically.

In general, the problem of clustering short text streams has two
schemes: the one pass scheme and the batch scheme. The one pass
scheme assumes that the streaming documents come one by one,
we can process each document only one time [3, 10, 23, 32, 33].
The batch scheme assumes that the streaming documents come in
batch, we can process the documents in each batch multiple times
[4, 5, 8, 18]. In real applications, the batch scheme maybe more
reasonable, because we can preprocess and cluster short text stream
in parallel, which means we can preprocess a batch of documents
and then send them to the stream clustering algorithm. In the batch
scheme, we can iterate the documents of current batch multiple
times, and discard themwhen a new batch arrives. The performance
of the stream clustering algorithm can improve apparently when
we allow multiple iterations of each batch.

In this paper, we propose two model-based short text stream
clustering algorithms that can work well on both of the above two
schemes. We first propose a short text stream clustering algorithm
based on the Dirichlet process multinomial mixture (DPMM) model,
called MStream. The MStream algorithm has one pass clustering
process and update clustering process of each batch. Experiments
show that MStream can achieve state-of-the-art performance with
only one pass of the stream, and can have even better performance
when we allow multiple iterations of each batch. Rather than as-
suming a document is distributed over topics, we assume each
document is associated with only one topic (cluster). In this way,
the MStream algorithm can cope with the sparsity problem of short
text. Moreover, we do not need a similarity threshold to determine
when to assign a document to a new cluster, because we can com-
pute the probability of a document choosing a new cluster directly
from the DPMM model following [31]. In this way, the MStream
algorithm can deal with the concept drift problem naturally.

As the number of clusters increases with more documents com-
ing in, the space and time complexity of MStream will grow too
large if we do not delete outdated clusters. Besides, we usually are

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2634

https://doi.org/10.1145/3219819.3220094
https://doi.org/10.1145/3219819.3220094

interested in the information of a specific period of time, rather than
the whole stream. However, it is difficult and inefficient to detect
and delete outdated clusters, because we cannot store documents
of all clusters in memory. We propose an improved algorithm of
MStream with forgetting rules called MStreamF, which can delete
outdated documents by deleting clusters of outdated batches. In
MStreamF, we still only store the documents of current batch, while
we can memorize the clusters of several batches. Because the clus-
ters of a batch contain all requisite information for deleting the
documents of a batch, and memorizing the clusters of a batch needs
not much memory. When the documents of a batch are outdated,
we can delete these documents from the current cluster feature (CF)
vectors with a subtraction operation effectively. The MStreamF
algorithm can also store the clusters of each batch on disk for later
offline analysis of the text stream.

The contributions of this paper are summarized as follows.
• Wepropose amodel-based clustering algorithm for short text
streams (MStream), which can deal with the concept drift
problem naturally. The MStream algorithm can achieve state-
of-the-art performance with only one pass of the stream, and
can have even better performance when we allow multiple
iterations of each batch.

• We propose an improved algorithm of MStream with for-
getting rules called MStreamF, which can efficiently delete
outdated documents by deleting clusters of outdated batches.

• We conduct extensive experimental study on several real
datasets, which validates both the effectiveness and effi-
ciency of our methods. The source code and datasets are
available at https://github.com/jackyin12/MStream.

2 RELATEDWORK
General surveys on stream data clustering can be found in [1, 19,
20, 24]. Text stream clustering methods can be categorized into the
following two categories: similarity-based stream clustering and
model-based stream clustering.

2.1 Similarity-based Stream Clustering
Similarity-based text stream clustering methods mostly use the
vector space model to represent documents and choose similarity
metric like cosine similarity to measure the similarity between
documents or clusters.

CluStream [3] is one of the most classic stream clustering meth-
ods, which consists of an online micro-clustering component and an
offline macro-clustering component. CluStream uses the pyramidal
time frame to store historical micro-clusters at different moments
for later analysis. DenStream [10] combines micro-clustering with
a density-estimation process for stream clustering, which can form
data clusters of any shape and handle outliers. Yoo et al. [32] pre-
sented a streaming spectral clustering method which maintains
an approximation of the normalized Laplacian of the data stream
over time and efficiently updates the changing eigenvector of the
Laplacian in a streaming fashion.

An efficient stream text clustering algorithm was presented by
Zhong et al. [33] using an online update for cluster centriods based
on the well-known Winner-Take-All competitive learning. Aggar-
wal and Yu [2] presented a condensation based method for text and

categorical data stream clustering which summarizes the stream
into fine grained cluster droplets. Shou et al. [23] presented a con-
tinuous summarization prototype called Sumblr for tweet streams.
Sumblr has a tweet stream clustering module which compresses
tweets into tweet feature vectors (TCVs) and maintains them in
an online fashion. Kalogeratos et al. [17] presented an approach
using term burst information for text stream clustering. This ap-
proach takes the advantage of the fact that most of the important
documents of a topic are published during the period in which the
“main” topic terms are bursty.

The limitation of similarity-based text stream clustering meth-
ods is that they need to choose a similarity threshold manually
to determine whether a document is assigned to a new cluster or
not. Our proposed MStream method computes the probability of
a document belonging to existing clusters and a new cluster, and
assign a document to an existing cluster or a new cluster according
to these probabilities. In this way, MStream can detect new clusters
more naturally and deal with the concept drift problem.

2.2 Model-based Stream Clustering
Model-based text stream clustering methods assume documents
are generated by a mixture model, and then use techniques like
Gibbs Sampling [14] and Sequential Monte Carlo [11] to estimate
the parameters of the mixture model, so as to obtain the clustering
results.

Many models that extend Latent Dirichlet Allocation (LDA)
[9] have been proposed for modeling text streams, such as dy-
namic topic model (DTM) [8], topic over time model (TOT) [27],
dynamic mixture model (DMM) [29], topic tracking model (TTM)
[15], temporal LDA (TM-LDA) [28], streaming LDA (ST-LDA) [5],
and Dirichlet-Hawkes topic model [12]. These methods assume that
the content of documents are rich enough to infer per-document
multinomial distributions for each topic. This assumption does not
hold for short text, which results these methods cannot achieve
good performance on short text streams. Liang et al. [18] presented
the dynamic clustering topic model (DCT) which is based-on the
Dirichlet multinomial mixture model [21]. DCT can handle short
text by assigning a single topic to each short document and using
the distributions inferred at certain time as priors for the inference
of next batch.

Most of the above models assume the number of clusters as a
fixed number, which means they cannot cope with the concept drift
problem of text stream clustering efficiently. Ahmed and Xing [4]
presented the temporal Dirichlet process mixture model (TDPM)
for evolutionary clustering that automatically increases the number
of clusters with the data. However, TDPM is an offline framework
and needs the whole sequences of text stream. We propose text
stream clustering methods that can work well on both the one pass
scheme and the batch scheme. Besides, our methods can handle
both short text challenge and concept drift challenge.

3 BACKGROUND
In this section, we give a brief introduction of Dirichlet process and
the Dirichlet process multinomial mixture (DPMM) model.

Dirichlet Process (DP) [26] is one member of nonparametric
stochastic processes, which is often used in Bayesian nonparametric

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2635

modeling of data. It is a distribution over distributions, i.e. each
distribution drawn from a Dirichlet process is itself a distribution.
A Dirichlet process, denoted by DP(α ,G0), is parameterized by a
base measure G0, and a concentration parameter α . We donate
G ∼ DP(α ,G0) as a draw from a Dirichlet process distributed over
a given parameter space Φ, and we can draw samples from G since
it is also a distribution.

Polya urn scheme [7] describes a process that draws a sequence
of samples ϕ1,ϕ2, ... from distribution G, which can be summarized
as follows:

ϕn |ϕ1:n−1 ∼
α

α + n − 1
+

∑n−1
k=1 δ (ϕn − ϕk)

α + n − 1
(1)

Here, δ (x) = 1 if x = 0 and δ (x) = 0 otherwise. In the beginning
there are no balls in the urn, and we pick a color drawn from the
base measure G0, i.e. draw ϕ1 ∼ G0, and drop a ball with that color
into the urn. In subsequent steps, we will either drop a ball of new
color into the urn with probability αG0

α+n−1 , or drop a ball of a color
already in the urn into the urn with probability n−1

α+n−1 .
Since the draws of distribution G are repeated, suppose n draws

of ϕi can take on K < n distinct values. This defines a partition of
the n draws into K clusters. The distribution over such partitions is
a Chinese restaurant process (CRP) [13]. Imagine a restaurant
with infinite number of tables, each table can seat infinite number
of customers. The first customer sits at the first table. Later, the n-th
customer either chooses an already occupied table k with proba-
bility nk

α+n−1 , or chooses a new table with probability α
α+n−1 . Here,

nk is the number of customers of table k. The Chinese restaurant
process illustrates the cluster property of Dirichlet process, i.e., a
new customer has higher probability of choosing a table with more
customers, and thus only a limited number of tables will be occu-
pied although the restaurant has infinite number of tables. This is
also called the richer gets richer phenomenon where tables with
more customers tend to attract more customers.

When we regard tables as clusters and customers as documents,
the Chinese restaurant process turns to be a simple text stream
clustering method, which only considers the size of the clusters
when clustering a new document. While documents of each clus-
ter are more important information to consider, and a document
should have higher probability of choosing a cluster with more sim-
ilar documents. By using Dirichlet process at the top of a mixture
model, we can obtain the Dirichlet process mixture model for non-
parametric clustering [6]. Yin and Wang [31] presented a collapsed
Gibbs sampling algorithm for the Dirichlet process multinomial
mixture (DPMM) model for static text clustering. As a further study,
we propose a short text stream clustering algorithm based on the
DPMM model.

The Polya urn scheme and Chinese restaurant process refer to
draws from distribution G, while the stick-breaking construc-
tion shows the property of G explicitly:

G(ϕ) =
∞∑
k=1

θkδ (ϕ − ϕk), where ϕk ∼ G0 (2)

Here, δ (x) = 1 if x = 0 and δ (x) = 0 otherwise. Themixture weights
θ = {θk }

∞
k=1 can be constructed by θ ∼ GEM(γ) [26].

The stick-breaking construction is significantly straightforward
and can lead to novel inference techniques for Dirichlet process

mixture models. We use the stick-breaking construction for the
generative process of the Dirichlet process multinomial mixture
(DPMM) model as follows:

θ |γ ∼ GEM(γ)

ϕk |β ∼ Dir (β) k = 1, ...,∞
zd |θ ∼ Mult(θ) d = 1, ...,∞
d |zd , {ϕk }

∞
k=1 ∼ p(d |ϕzd)

The probability of document d generated by cluster z is defined as
follows:

p(d |ϕz) =
∏
w ∈d

Mult(w |ϕz) (3)

Here, we make the Naive Bayes assumption: the words in a doc-
ument are generated independently when the document’s cluster
assignment z is known. We also assume that the probability of a
word is independent of its position within the document.

4 APPROACH
In this section, we first introduce the representation of documents
and clusters used in our methods. Then we propose the MStream al-
gorithmwhich can work well in both the one pass scheme and batch
scheme. We further propose an improved algorithm of MStream
with forgetting rules called MStreamF, which can efficiently delete
outdated documents.

4.1 Representation
Similarity-based clustering methods represent documents with the
vector space model (VSM) [22], and use term frequency-inverse doc-
ument frequency (TF-IDF) to measure the weights of words in the
vector, which essentially assumes a document as a point in a high-
dimentional space whose dimension is the length of the dictionary.
Differently, we represent a document with only its words and the
corresponding frequency in the document, which is more concise
and straightforward. The essential difference is that VSM-based
methods assume that a document is generated by the Gaussian
distribution, while we assume that a document is generated by the
multinomial distribution.

Similarity-based clustering methods like K-means [16] represent
a cluster as the mean of its document vectors. In contrast, we repre-
sent a cluster with the cluster feature (CF) vector, which essentially
is a big document combined with its documents. The definition of
the CF vector of a cluster is defined as follows.

Definition 1. The cluster feature (CF) vector for a cluster z is
defined as a tuple {®nz ,mz ,nz }, where

• ®nz contains a list of word frequencies in cluster z.
• mz is the number of documents in cluster z.
• nz is the number of words in cluster z.

The cluster feature (CF) vector presents important addible and
deletable properties, as described next.

• Addible Property. A document d can be efficiently added
to cluster z by updating its CF vector as follows.

nwz = n
w
z + N

w
d ∀w ∈ d

mz =mz + 1
nz = nz + Nd

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2636

• Deletable Property.Adocument d can be efficiently deleted
from cluster z by updating its CF vector as follows.

nwz = n
w
z − Nw

d ∀w ∈ d

mz =mz − 1
nz = nz − Nd

Here, Nw
d and Nd are the number of occurrences of wordw in

document d and the total number of words in document d , respec-
tively, andNd =

∑
w ∈d Nw

d . Besides,nwz is the number of frequency
of wordw in cluster z. The complexity of adding a document to a
cluster and deleting a document from a cluster are bothO(L̄), where
L̄ (often less than 102 for short text) is the average length of the
documents. The addible and deletable properties of CF vectors are
useful in the stream text clustering algorithm we will propose in
the next section.

4.2 The MStream Algorithm
In this section, we propose a model-based clustering algorithm for
short text streams called MStream, which has one pass clustering
process and update clustering process of each batch. From the exper-
imental study part, we can see MStream can achieve state-of-the-art
performance with only one pass clustering process. The update
clustering process can further improve the clustering performance
when we allow multiple iterations of each batch.

One of the most important considerations of clustering text
streams is to define the relationship of documents and clusters.
Similarity-based stream clustering methods [1, 24] use metrics like
cosine similarity to define the similarity between a document and
a cluster. To deal with the concept drift problem, these methods
usually choose a similarity threshold. When clustering a document,
if its similarity between the closest cluster is larger than the thresh-
old, it is assigned to this closest cluster. Otherwise, the document is
assigned to a new cluster. However, it is hard to manually choose a
proper similarity threshold in real applications.

Differently, we assume the documents are generated by the
Dirichlet Process Multinational Mixture (DPMM) model introduced
in Section 3. Yin and Wang [31] presented a collapsed Gibbs sam-
pling algorithm for the DPMM model for static text clustering. As a
further study, we propose a short text stream clustering algorithm
based on the DPMM model. From the DPMM model, we can derive
the probability of document d choosing an existing cluster z as
follows:

p(zd = z |®z¬d , ®d,α , β)

∝
mz,¬d

D − 1 + αD

∏
w ∈d

∏Nw
d

j=1 (n
w
z,¬d + β + j − 1)∏Nd

i=1(nz,¬d +V β + i − 1)
(4)

Here, ¬d means document d was removed from its current cluster
feature (CF) vector, which is useful for the update clustering process
of MStream. For a new coming document, ¬d does not influence
the CF vectors. Different from static text clustering [31], D is the
number of current recorded documents and V is the size of the
vocabulary of current recorded documents.

We can also derive the probability of document d choosing a
new cluster as follows:

p(zd = K + 1|®z¬d , ®d,α , β)

∝
αD

D − 1 + αD

∏
w ∈d

∏Nw
d

j=1 (β + j − 1)∏Nd
i=1(V β + i − 1)

(5)

Different from static text clustering [31], we set γ = αD, because
the hyper parameter γ for generating mixture weights θ ∼ GEM(γ)
should be dynamic for text stream clustering. Here,αD is the pseudo
number of documents in the new cluster, and β is the pseudo num-
ber of occurrences of each word in the new cluster.

The first part of Equation 4 and Equation 5 means that the prob-
ability of a document choosing a cluster is proportional to the
number of documents in the cluster. A new document has higher
probability of choosing a cluster with more documents, and thus
only a limited number of clusters will be created although the num-
ber of clusters can be infinite. This is also known as the richer
gets richer phenomenon where large clusters tend to attract more
documents.

The second part of Equation 4 and Equation 5 actually defines
the similarity between the document and the cluster. It is a product
of Nd parts that correspond to the Nd words in document d . For
each wordw in document d , the corresponding part measures the
the frequency of word w in cluster z. When a cluster has more
documents that share same words with document d , the second
part will be larger, and document d will be more likely to choose
that cluster.

The detail of the MStream algorithm is shown in Algorithm 1.
The MStream algorithm has one pass clustering process and update
clustering process of each batch.

The one pass clustering process of MStream can be used to
deal with the one pass scheme of text streams which assumes that
the streaming documents come one by one, and we can process each
document only one time. For the first document, it will choose a new
cluster. The cluster feature (CF) vector of this new created cluster
will be initialized with the first document. Later, a new coming
document will choose one of the existing clusters or a new cluster
according to corresponding probability computed with Equation
4 and Equation 5. When a new cluster is chosen, we create a new
cluster to store the corresponding document. Otherwise, we add
the corresponding document into the chosen existing cluster with
the addible property.

The update clustering process of MStream can be used to
deal with the batch scheme of text streams which assumes that
the streaming documents come in batch, and we can process the
document in each batch multiple times. When a new batch of docu-
ments comes, we first use the above one pass clustering process of
MStream to obtain an initial clustering result with one iteration of
the batch. Then we use the update clustering process of MStream
to update the clustering results. For each document, we first delete
it from its current cluster with the deletable property. Then, we
reassign the document to a cluster according to the probability of
the document belonging to each of the K existing clusters and a
new cluster computed with Equation 4 and Equation 5. For the last
iteration, we reassign each document to the cluster with the highest
probability.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2637

Algorithm 1: MStream(®dt)

Input :Documents ®dt of batch t.
Output :Cluster assignments ®zt of batch t.
begin

//One pass clustering process
for d = 1 to | ®dt | do

Compute the probability of document d choosing each of the
K existing clusters and a new cluster.

Sample cluster index z for document d according to the
above K + 1 probabilities.

if z == K + 1 then
//A new cluster is chosen
K = K + 1
InitializemK , nK , and nwK as zero

mz =mz + 1 and nz = nz + Nd
for each word w ∈ d do

nwz = n
w
z + N

w
d

//Update clustering process
for iter = 2 to I do

for d = 1 to | ®dt | do
Record the current cluster of d : z = zd
mz =mz − 1 and nz = nz − Nd
for each word w ∈ d do

nwz = n
w
z − Nw

d
Compute the probability of document d choosing each of
the K existing clusters and a new cluster.

if iter < I then
Sample cluster index z for document d according to
the above K + 1 probabilities.

else
Choose cluster index z for document d with the
highest probability.

if z == K + 1 then
//A new cluster is chosen
K = K + 1
InitializemK , nK , and nwK as zero

mz =mz + 1 and nz = nz + Nd
for each word w ∈ d do

nwz = n
w
z + N

w
d

The MStream algorithm always records the current K cluster fea-
ture (CF) vectors and the documents of the current batch. Then the
space complexity of the MStream algorithm is O(KV +ML̄), where
K is the number of clusters, V is the size of the vocabulary,M is the
number of documents in each batch, and L̄ is the average length of
the documents. The time complexity of computing the probability
of document belonging to a cluster is linear to the average length of
the documents L̄. The time complexity of MStream with only one
pass clustering process is O(KNL̄), where N is the total number of
documents in the stream. The time complexity of MStream with
both one pass clustering process and update clustering process is
O(IKN L̄), where I is the number of iterations of each batch. As
shown in Section 5.4, the update clustering process can apparently

improve the performance of MStream, and MStream can achieve
good performance with only two iterations of each batch.

4.3 The MStreamF Algorithm
As the number of clusters increases withmore documents coming in,
the space and time complexity of MStream will grow too large if we
do not delete outdated clusters. Besides, we usually are interested
in the information of a specific period of time, rather than the
whole stream. Many data stream clustering methods [3, 10, 23]
try to detect and delete outdated clusters regularly. However, it
is difficult and inefficient to detect outdated clusters, because we
cannot store documents of all clusters in memory, especially when
some clusters grow big. Another choice is to directly delete outdated
documents, which is more simple and efficient. However, we only
store the documents of the current batch, and the documents of
past batches are discarded. The intuition is that a cluster can be
seen as a big document combined with its documents, and we can
store the clusters of not outdated batches. When the documents of
batch b are outdated, we can delete documents of batch b from the
current cluster feature (CF) vectors with the following subtraction
operation.

Definition 2. Subtraction Operation For each cluster z of batch
b, the subtraction operation of its documents from the current CF
vectors is given by

®nz = ®nz − ®nb,z

mz =mz −mb,z

nz = nz − nb,z

Here {®nz ,mz ,nz } is the current CF vector of cluster z, and
{®nb,z ,mb,z ,nb,z } is the CF vector of cluster z of batch b.

Based on the above intuition, we propose an improved algorithm
of MStream with forgetting rules, called MStreamF. The detail of
MStreamF is shown in Algorithm 2. MStreamF has a parameter
Bs which means the number of batches we store, and the current
CF vectors record documents of the latest Bs batches. When the
number of batches stored is larger than Bs , we should delete the CF
vectors of the oldest batch with the subtraction operation before
clustering documents of a new batch with the MStream algorithm.

As the arriving of more batches of documents, we can detect
new clusters and deleting documents of old batches. Some clus-
ters turn into empty because their documents were outdated and
deleted in this process. When a cluster gets empty, the probability
of later documents choosing this cluster is zero, which means no
document will choose this cluster anymore. For the convince of
further analysis, we do not reuse cluster IDs of past clusters.

Many data stream clustering methods [3, 23] store the clustering
results at particular moments of the stream on disk for further
analysis. Because they delete outdated clusters rather than outdated
documents in the stream clustering period. As we delete outdated
documents by deleting CF vectors of outdated batch, we cannot
obtain the clustering results of a period by the clustering results
of its start and end moments. We can store the cluster feature (CF)
vectors of each batch on disk and obtain the clustering results of a
specific period. This is a balance of the efficiency of online clustering
and offline analysis.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2638

Algorithm 2: MStreamF

Input :Short text streams ®d1, ®d2, ..., ®dt , ...
Number of stored batches Bs

Output :Cluster assignments of each batch ®z1, ®z2, ..., ®zt , ...
begin

t = 0 // t records the ordinal number of batches.
while !stream.end() do

t = t + 1
®dt = stream.next()
//If the number of stored batches is larger than Bs , we delete
the oldest batch from current CF vectors.

if t > Bs + 1 then
b = t − Bs − 1
for each cluster z ∈ batch b do

®nz = ®nz − ®nb,z
mz =mz −mb,z

nz = nz − nb,z
Remove the CF vectors of the oldest batch b.

//Initialize CF vectors of bath t with current CF vectors.
®nt,z = ®nz
mt,z =mz

nt,z = nz
//Clustering documents of batch t with MStream.
MStream(®dt)
//Compute CF vectors of batch t
for each cluster z ∈ batcht do

®nt,z = ®nz − ®nt,z
mt,z =mz −mt,z

nt,z = nz − nt,z

The MStreamF algorithm always records the current K cluster
feature (CF) vectors, the clusters of Bs stored batches, and the docu-
ments of the current batch. Then the space complexity of MStreamF
is O(Bs K̄V +ML̄), where Bs is the number of stored batches, K̄ is
the average number of the clusters of each batch, V is the size of
the vocabulary,M is the number of documents in each batch, and
L̄ is the average length of the documents. The time complexity of
MStreamF is O(BK̄V + IKN L̄), where B is the number of deleted
batches, I is the number of iterations of each batch. We should note
that MStreamF can achieve good and stable performance with few
iterations. Besides, the number of current clusters K of MStreamF
can be smaller than that of MStream, because of the forgetting rules
of MStreamF.

5 EXPERIMENTAL STUDY
5.1 Experimental Setup

5.1.1 Datasets. We use two real short text datasets and two
variants of them in the experimental study:

• Tweets. This dataset consists of 30,322 tweets that are highly
relevant to 269 queries in the TREC 2011-2015 microblog
track 1 . The average length of the documents in this dataset
is 7.97.

1http://trec.nist.gov/data/microblog.html

Dataset D K V Avg Len
Tweets & Tweets-T 30,322 269 12,301 7.97
News & News-T 11,109 152 8,110 6.23

Table 1: Statistics of the text datasets (D: Number of docu-
ments, K : Number of clusters, V : Vocabulary size, Avg Len:
Average length of the documents)

• News. This dataset was first used in [30], which consists
of 11,109 news titles belonging to 152 clusters. The average
length of the documents in this dataset is 6.23.

• Tweets-T and News-T. In the real world, the situation oc-
curs frequently where topics appear only on a certain time
window and disappear after that. So we sort Tweets and
News by topics to obtain two new datasets. We further divide
them into 16 equal parts and shuffle each part separately.

The preprocessing step includes converting all letters into low-
ercase, removing stop words, and stemming. Table 1 shows the
statistics of these text datasets after preprocessing We can see that
the average length indicates the two datasets is suitable for short
streaming clustering.

5.1.2 Evaluation Metric. The Normalized Mutual Information
(NMI) [25] is widely used to evaluate the quality of the clustering
results. NMI measures the amount of statistical information shared
by the random variables representing the cluster assignments and
the ground truth groups of the documents. Normalized Mutual
Information (NMI) is formally defined as follows :

NMI =

∑
c,k nc,k log (N ·nc,k

nc ·nk
)√

(
∑
c nc log nc

N)(
∑
k nk log nk

N)

(6)

where nc is the number of documents in class c , nk is the number
of documents in cluster k , nc,k is the number of documents in class
c as well as in cluster k , and N is the number of documents in the
dataset. When the clustering results perfectly match the ground
truth classes, the NMI value will be one. While when the clustering
results are randomly generated, the NMI value will be close to zero.

5.1.3 Methods for Comparison. We compareMStream andMStreamF
with the following state-of-the-art algorithms:

• DTM. Dynamic topic models [8] are generative models that
can be used to analyze the evolution of (unobserved) topics
of a collection of documents over time. This family of models
is an extension to Latent Dirichlet Allocation (LDA) that can
handle sequential documents.

• DCT-L. Dynamic clustering topic model (DCT) [18] enables
tracking the time-varying distributions of topics over docu-
ments and words over topics. Long-term dependency DCT
(DCT-L) can capture long-term trends in topics.

• Sumblr. Sumblr [23] proposes an online tweet stream clus-
tering algorithmwhich is able to efficiently cluster the tweets
and maintain compact cluster statistics, with only one pass
of the stream.

Without specification, we use MStream to deal with Tweets and
News datasets and MStreamF to deal with Tweets-T and News-T
datasets. For MStream and MStreamF, we set α = 0.03, β = 0.03,
and the number of iterations to 10, and the maximum number of
stored batches is set to one for MStreamF. We set α to 0.01 for DTM,

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2639

http://trec.nist.gov/data/microblog.html

Tweets Tweets-T News News-T
MStream .844 ± .002 .882 ± .004 .834 ± .004 .850 ± .004
MStreamF .823 ± .005 .923 ± .003 .797 ± .003 .873 ± .003

DTM .801 ± .002 .802 ± .001 .793 ± .002 .806 ± .002
DCT-L .697 ± .002 .669 ± .005 .733 ± .002 .744 ± .004
Sumblr .689 ± .001 .695 ± .003 .575 ± .005 .720 ± .002

Table 2: NMI results of different methods.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

N
M

I

Batch

MStream

MStreamF

DTM

DCT-L

Sumblr

(a) Tweets

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

N
M

I

Batch

MStream

MStreamF

DTM

DCT-L

Sumblr

(b) Tweets-T

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

N
M

I

Batch

MStream

MStreamF

DTM

DCT-L

Sumblr

(c) News

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

N
M

I

Batch

MStream

MStreamF

DTM

DCT-L

Sumblr

(d) News-T

Figure 1: NMI results of different methods on each batch.

initial α and β at 1 and 0.1 respectively for DCT-L and β to 0.02
for Sumblr. For DTM, DCT-L and Sumblr, in which the number
of topics should be specified before the experiment, we set it at
300 and 170 for Tweets and News datasets respectively. Without
specification, we set the maximum number of iterations of each
batch to 10 and run 10 independent trials for each method.

5.2 Comparison with Existing Methods
In this part, we compare the performance ofMStream andMStreamF
with DTM [8], DCT-L [18] and Sumblr [23]. For each algorithm, we
report the mean and standard deviation of the NMI of the overall
results in Table 2 and the NMI of the results for each 16 batches in
Figure 1. To make a comparison between MStream and MStreamF,
we report the number of stored clusters when dealing with each
batch in Figure 2.

From Table 2, we can see that MStream and MStreamF always
achieve the highest performance compared with the other three
clustering methods on all the datasets. Meanwhile, the standard
deviations of the 10 independent trials of MStream and MStreamF
are not really big which means they have high consistency. By com-
paring MStream and MStreamF, we find that the former performs
better on the normal datasets and the latter performs better on the
datasets organized by topics, which proves our forgetting strategy
works well.

From Figure 1, we can see that the NMI in each batch is fluctuant,
indicating that there are many different cases, which means that
the batches in each dataset are representative. Generally speak-
ing, MStream and MStreamF perform better in each batch of each
dataset, showing that both of them can adapt to many situations.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16

N
u
m

b
e
r

o
f
C

lu
s
te

rs

Batch

MStream in Tweets-T

MStreamF in Tweets-T

MStream in News-T

MStreamF in News-T

Figure 2: The number of stored clusters when dealing with
each batch.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2 4 6 8 10 12 14 16

T
im

e
(s

)

Size of Data Set

MStream

MStreamF

DTM

DCT-L

Sumblr

MStreamOne

MStreamFOne

(a) Speed on Tweets

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16

T
im

e
(s

)

Size of Data Set

MStream

MStreamF

DTM

DCT-L

Sumblr

MStreamOne

MStreamFOne

(b) Speed on News

Figure 3: Speed of different methods.

Figure 2 shows the number of stored clusters when dealing with
each batch found byMStream andMStreamF. From Figure 2, we can
see that MStream and MStreamF get the same number of clusters
on the first and next batches. But in dealing with the subsequent
batches, MStreamF will stored not too many clusters by forgetting
batches existing for too long. MStream, on the contrary, gets more
and more clusters over time. Therefore, for Tweets-T and News-T,
MStreamF will not only perform better, but run faster and take up
less storage space.

5.3 Speed of the Algorithms
In this part, we try to investigate the speed of MStream, MStreamF
and other methods. MStream, MStreamF and Sumblr were imple-
mented in Python. DTM and DCT were implemented in C++. All
algorithms were run on a Linux server with Intel Xeon X5690
3.47GHz CPU and 94GB memory. We set the number of iterations
of each batch to 10 for all methods (except Sumblr) to make a fair
comparison. Sumblr has only one pass of each batch. MStreamOne
and MStreamFOne are the versions of MStream and MStreamF with
only the one pass clustering process.

Figure 3 shows the speed of different methods with different size
of datasets. We can see that the speed of these methods are approx-
imately linear to the size of datasets, MStreamOne and MStream-
FOne are apparently faster than other methods. We can also see
that MStreamF is faster than MStream, the reason is that MStreamF
keeps less clusters than MStream by deleting outdated batches.

5.4 Influence of the Number of Iterations
In this part, we try to investigate the influence of the number of
iterations of each batch to the performance and the number of
clusters found by MStream and MStreamF. We use MStream to
deal with Tweets and News datasets and MStreamF to deal with
Tweets-T and News-T datasets.

Figure 4a shows the performance with different number of it-
erations of each batch. From Figure 4a, we can see that MStream
and MStreamF can achieve state-of-the-art performance with only

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2640

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

N
M

I

Iterations

Tweets

Tweets-T

News

News-T

(a) Peformance

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

N
u
m

b
e
r

o
f
C

lu
s
te

rs

Iterations

Tweets

Tweets-T

News

News-T

(b) Number of clusters

Figure 4: Influence of the number of iterations of each batch.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

N
M

I

Number of Batches

Tweets

Tweets-T

News

News-T

(a) Peformance

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30

N
u
m

b
e
r

o
f
C

lu
s
te

rs

Number of Batches

Tweets

Tweets-T

News

News-T

(b) Number of clusters

Figure 5: Influence of the number of batches.

the one pass clustering process of the stream, which is the first
iteration of each batch. Besides, the update clustering process can
improve the performance quickly and apparently, experimentally
the second iteration of each batch. We can see that MStream and
MStreamF get stable performance within about 2 iterations. This
shows that the two methods are both fast to converge.

Figure 4b shows the number of clusters found by MStream and
MStreamF with different number of iterations of each batch. From
Figure 4b, we can see that the number of clusters drops with more
iterations of each batch, this means the update clustering process
can amend the result of the one pass clustering process. We also
can see that, after about three iterations, the number of clusters
found on each datasets is near the true number of clusters in the
datasets.

5.5 Influence of the Number of Batches
In this part, we try to investigate the influence of the number of
batches to the performance and the number of clusters found by
MStream and MStreamF. We use MStream to deal with Tweets and
News datasets and MStreamF to deal with Tweets-T and News-T
datasets. The number of batches ranges from 5 to 30, which means
the size of batches ranges from 1000 to 6000 on Tweets and from
370 to 2200 on News respectively.

Figure 5a shows the performancewith different number of batches.
From Figure 5a, we can see that MStream and MStreamF can handle
different situations, where the size of batches varies from hundred
to thousand magnitudes, using constant parameters and resulting
good performance. We can also see that, in most cases, the per-
formance grows with the number of batches, which means this
method performs better on smaller size of batches.

Figure 5b shows the number of clusters found by MStream and
MStreamF with different number of batches. From Figure 5b, we can
see that the number of clusters grows with the number of batches,
which means the number of clusters increases as the size of batches

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

N
M

I

Number of Stored Batches

Tweets-T

News-T

(a) Performance

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

N
u
m

b
e
r

o
f
C

lu
s
te

rs

Number of Stored Batches

Tweets-T

News-T

(b) Number of clusters

Figure 6: Influence of the most number of stored batches.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

N
M

I

Alpha

Tweets
Tweets-T

News
News-T

(a) Performance

 0

 100

 200

 300

 400

 500

 600

 700

 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

N
u
m

b
e
r

o
f
C

lu
s
te

rs

Alpha

Tweets
Tweets-T

News
News-T

(b) Number of clusters

Figure 7: Influence of Alpha.

becomes smaller. But for datasets arranged by topics, this trend is
relatively flat.

5.6 Influence of the Maximum Number of
Stored Batches

In this part, we try to investigate the influence of the number of
stored batches to the number of clusters and performance found by
MStreamF on Tweets-T and News-T. The number of batches is 16.
The number of stored batches ranges from 0 to 15.

Figure 6 shows the number of clusters and performance with
different number of stored batches. From Figure 6a, we can see
that NMI drops as the number of stored batches increases. Due to
the way of construction of Tweets-T and News-T, most topics only
appear in a specific batch, so MStreamF will perform better if it
stores less batches. But from Figure 6b, we can see that the number
of clusters found by MStreamF is large when no batch is stored
and suddenly drops at one, then increases as the number of stored
batches increases. So storing zero batch is not a good solution. A
compromise to deal with this situation is storing one batch to get
NMI high enough and find not too many clusters.

5.7 Influence of Alpha
In this part, we try to investigate the influence of α to the perfor-
mance and the number of clusters found byMStream andMStreamF.
We useMStream to deal with Tweets andNews datasets andMStreamF
to deal with Tweets-T and News-T datasets. The range of α is from
0.01 to 0.05.

Figure 7a shows the performance of MStream and MStreamF
with different values of α . From Figure 7a, we can see MStream and
MStreamF can achieve stable performance with different α on these
datasets. Figure 7b shows the number of clusters found by MStream
and MStreamF with different values of α . An observation is that
the number of clusters found by MStream and MStreamF increases
with α . The reason is that α is the pseudo number of documents

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2641

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

N
M

I

Beta

Tweets

Tweets-T

News

News-T

(a) Performance

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

N
u
m

b
e
r

o
f
C

lu
s
te

rs

Beta

Tweets

Tweets-T

News

News-T

(b) Number of clusters

Figure 8: Influence of Beta.

in each cluster, and the probability of the document choosing the
potential cluster grows with α .

5.8 Influence of Beta
In this part, we try to investigate the influence of β to the pefor-
mance and the number of clusters found byMStream andMStreamF.
We useMStream to deal with Tweets andNews datasets andMStreamF
to deal with Tweets-T and News-T datasets. The range of β is from
0.01 to 0.05.

Figure 8a shows the performance of MStream and MStreamF
with different values of β . From Figure 8a, we can see MStream and
MStreamF can achieve stable performance with different β on these
datasets. Figure 8b shows the number of clusters found by MStream
and MStreamF with different values of β . An observation is that
the number of clusters found drops when β gets larger. The reason
is that β is the pseudo frequency of each word in each cluster, and
the probability of a document choosing a cluster is less sensitive to
the similarity between the documents and the clusters when β gets
larger. As a result, “richer gets richer” property makes MStream
and MStreamF get fewer clusters.

6 CONCLUSION
In this paper, we first propose a short text stream clustering algo-
rithm based on the Dirichlet process multinomial mixture model,
call MStream, which can deal with the concept drift problem and
sparsity problem naturally. The MStream algorithm can achieve
state-of-the-art performance with only one pass of the stream, and
can have even better performance when we allow multiple itera-
tions of each batch. We propose an improved algorithm of MStream
with forgetting rules called MStreamF, which can efficiently delete
outdated documents by deleting clusters of outdated batches. Our
extensive experimental study shows that MStream and MStreamF
can achieve better performance than three baselines on real datasets.
As future work we intent to use the proposed methods to improve
the performance of other related applications such as search result
diversification, event detection and tracking, and text summariza-
tion in the context of short text streams.

ACKNOWLEDGMENTS
This workwas supported in part by National Basic Research 973 Pro-
gram of China under Grant No. 2015CB352502 and 2014CB340505,
National Natural Science Foundation of China under Grant No.
61702190, 61532010, and 61521002.

REFERENCES
[1] Charu C Aggarwal. 2013. A Survey of Stream Clustering Algorithms. (2013).

[2] Charu C Aggarwal and S Yu Philip. 2010. On clustering massive text and cate-
gorical data streams. Knowledge and information systems 24, 2 (2010), 171–196.

[3] Charu C Aggarwal, S Yu Philip, Jiawei Han, and Jianyong Wang. 2003. -A
Framework for Clustering Evolving Data Streams. In VLDB. Elsevier, 81–92.

[4] Amr Ahmed and Eric Xing. 2008. Dynamic non-parametric mixture models
and the recurrent chinese restaurant process: with applications to evolutionary
clustering. In SDM. SIAM, 219–230.

[5] Hesam Amoualian, Marianne Clausel, Eric Gaussier, and Massih-Reza Amini.
2016. Streaming-lda: A copula-based approach to modeling topic dependencies
in document streams. In SIGKDD. ACM, 695–704.

[6] Charles E Antoniak. 1974. Mixtures of Dirichlet processes with applications to
Bayesian nonparametric problems. The annals of statistics (1974), 1152–1174.

[7] David Blackwell and James B MacQueen. 1973. Ferguson distributions via Pólya
urn schemes. The annals of statistics (1973), 353–355.

[8] David M Blei and John D Lafferty. 2006. Dynamic topic models. In ICML. ACM,
113–120.

[9] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. J. Mach. Learn. Res. (2003). http://dl.acm.org/citation.cfm?id=944919.
944937

[10] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. 2006. Density-based
clustering over an evolving data stream with noise. In SDM. SIAM, 328–339.

[11] Arnaud Doucet, Nando De Freitas, and Neil Gordon. 2001. An introduction to
sequential Monte Carlo methods. In Sequential Monte Carlo methods in practice.
Springer, 3–14.

[12] Nan Du, Mehrdad Farajtabar, Amr Ahmed, Alexander J Smola, and Le Song.
2015. Dirichlet-hawkes processes with applications to clustering continuous-
time document streams. In SIGKDD. ACM, 219–228.

[13] Thomas S Ferguson. 1973. A Bayesian analysis of some nonparametric problems.
The annals of statistics (1973), 209–230.

[14] Hemant Ishwaran and Lancelot F James. 2001. Gibbs sampling methods for
stick-breaking priors. J. Amer. Statist. Assoc. 96, 453 (2001), 161–173.

[15] Tomoharu Iwata, Shinji Watanabe, Takeshi Yamada, and Naonori Ueda. 2009.
Topic Tracking Model for Analyzing Consumer Purchase Behavior.. In IJCAI,
Vol. 9. 1427–1432.

[16] Anil K. Jain. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition
Letters 31, 8 (2010), 651–666.

[17] Argyris Kalogeratos, Panagiotis Zagorisios, and Aristidis Likas. 2016. Improving
text stream clustering using term burstiness and co-burstiness. In SETN. ACM,
16.

[18] Shangsong Liang, Emine Yilmaz, and Evangelos Kanoulas. 2016. Dynamic clus-
tering of streaming short documents. In SIGKDD. ACM, 995–1004.

[19] Alireza Rezaei Mahdiraji. 2009. Clustering data stream: A survey of algorithms.
International Journal of Knowledge-based and Intelligent Engineering Systems 13,
2 (2009), 39–44.

[20] Hai-Long Nguyen, Yew-Kwong Woon, and Wee-Keong Ng. 2015. A survey on
data stream clustering and classification. Knowledge and information systems 45,
3 (2015), 535–569.

[21] Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom M. Mitchell. 2000.
Text Classification from Labeled and Unlabeled Documents using EM. Machine
Learning 39, 2/3 (2000), 103–134.

[22] Gerard Salton, A.Wong, and C. S. Yang. 1975. A Vector SpaceModel for Automatic
Indexing. Commun. ACM 18, 11 (1975), 613–620.

[23] Lidan Shou, Zhenhua Wang, Ke Chen, and Gang Chen. 2013. Sumblr: continuous
summarization of evolving tweet streams. In SIGIR. ACM, 533–542.

[24] Jonathan A Silva, Elaine R Faria, Rodrigo C Barros, Eduardo R Hruschka, An-
dre CPLF De Carvalho, and João Gama. 2013. Data stream clustering: A survey.
ACM Computing Surveys (CSUR) 46, 1 (2013), 13.

[25] Alexander Strehl and Joydeep Ghosh. 2003. Cluster ensembles—a knowledge
reuse framework for combining multiple partitions. The Journal of Machine
Learning Research 3 (2003), 583–617.

[26] Yee Whye Teh. 2010. Dirichlet process. In Encyclopedia of machine learning.
Springer, 280–287.

[27] Xuerui Wang and Andrew McCallum. 2006. Topics over time: a non-Markov
continuous-time model of topical trends. In SIGKDD. ACM, 424–433.

[28] Yu Wang, Eugene Agichtein, and Michele Benzi. 2012. TM-LDA: efficient online
modeling of latent topic transitions in social media. In SIGKDD. ACM, 123–131.

[29] Xing Wei, Jimeng Sun, and Xuerui Wang. 2007. Dynamic Mixture Models for
Multiple Time-Series.. In IJCAI, Vol. 7. 2909–2914.

[30] Jianhua Yin and Jianyong Wang. 2014. A dirichlet multinomial mixture model-
based approach for short text clustering. In SIGKDD. ACM, 233–242.

[31] Jianhua Yin and JianyongWang. 2016. Amodel-based approach for text clustering
with outlier detection. In ICDE. IEEE, 625–636.

[32] Shinjae Yoo, Hao Huang, and Shiva Prasad Kasiviswanathan. 2016. Streaming
spectral clustering. In ICDE. IEEE, 637–648.

[33] Shi Zhong. 2005. Efficient streaming text clustering. Neural Networks 18, 5-6
(2005), 790–798.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2642

http://dl.acm.org/citation.cfm?id=944919.944937
http://dl.acm.org/citation.cfm?id=944919.944937

	Abstract
	1 Introduction
	2 Related Work
	2.1 Similarity-based Stream Clustering
	2.2 Model-based Stream Clustering

	3 Background
	4 Approach
	4.1 Representation
	4.2 The MStream Algorithm
	4.3 The MStreamF Algorithm

	5 Experimental Study
	5.1 Experimental Setup
	5.2 Comparison with Existing Methods
	5.3 Speed of the Algorithms
	5.4 Influence of the Number of Iterations
	5.5 Influence of the Number of Batches
	5.6 Influence of the Maximum Number of Stored Batches
	5.7 Influence of Alpha
	5.8 Influence of Beta

	6 Conclusion
	References

