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Abstract. We address the problem, i.e., early prediction of activity pop-
ularity in event-based social networks, aiming at estimating the final pop-
ularity of new activities to be published online, which promotes appli-
cations such as online advertising recommendation. A key to success
for this problem is how to learn effective representations for the three
common and important factors, namely, activity organizer (who), loca-
tion (where), and textual introduction (what), and further model their
interactions jointly. Most of existing relevant studies for popularity pre-
diction usually suffer from performing laborious feature engineering and
their models separate feature representation and model learning into two
different stages, which is sub-optimal from the perspective of optimiza-
tion. In this paper, we introduce an end-to-end neural network model
which combines the merits of Memory netwOrk and factOrization moD-
els (MOOD), and optimizes them in a unified learning framework. The
model first builds a memory network module by proposing organizer
and location attentions to measure their related word importance for
activity introduction representation. Afterwards, a factorization module
is employed to model the interaction of the obtained introduction repre-
sentation with organizer and location identity representations to generate
popularity prediction. Experiments on real datasets demonstrate MOOD
indeed outperforms several strong alternatives, and further validate the
rational design of MOOD by ablation test.

Keywords: Popularity prediction · Event-based social network
Memory network · Factorization model

1 Introduction

In recent years, a growing body of studies have explored the problem of pop-
ularity prediction for user-generated content [1], which finds a wide range of
real applications, including online advertising [2], recommender system [3], and
trend detection [4], to name a few. In this paper, we present a new variant of
general popularity prediction problem, titled early prediction of activity popular-
ity. Activity is the fundamental component in event-based social networks [5–8],
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an increasingly popular social media linking online and offline worlds. This prob-
lem focuses on predicting the ultimate number of participants given activities
to be published online with respect to three important types of factors, namely,
organizer (Who organize the activities?), location (Where are the activities
held?), and textual introduction (What are the activities about?). It is signifi-
cant for both activity organizers to understand whether their activities will be
attractive in advance and ordinary users to avoid information overload and filter
unappealing activities (see Fig. 1).

Many efforts have been devoted to different popularity prediction problems
in the literature [9–12]. Among them, textual based static popularity modeling
approaches [13–15], which have no need of targets’ existing popularity dynamics
over time, are relevant to our study. However, most of these approaches suf-
fer from heavy engineering cost to pursue effective representations of different
factors for the studied targets, especially for unstructured textual data. Such
complicated feature design limits its generalization ability. Moreover, feature
representation and model learning are separated into two stages, which is sub-
optimal from the perspective of optimization as the pre-specified feature repre-
sentation might not be very suitable for the prediction object. These limitations
pose a major challenge for this study: how can we learn multiple effective fea-
ture representations and model these representations jointly to generate accurate
popularity prediction in an end-to-end fashion?

Proposed Model. To address the challenge, we develop an end-to-end neu-
ral network approach which fuses Memory netwOrk with factOrization moDels
(MOOD), inspired by recent advances of attention and memory mechanisms for
natural language processing [16,17]. The central idea is to endow MOOD with
the ability of learning effective textual representation through powerful mem-
ory network and jointly modeling representations of multiple factors by tensor
factorization. More specifically, MOOD first builds a memory network module
to learn the representation of activity introduction. Organizer and location are
leveraged as contextual information when performing attention to capture the
importance of each word in the activity introduction. Through this way, the
same word associated with different organizers and locations might have dif-
ferent contributions to build the activity introduction representation, enabling
the representation being personalized. Afterwards, a tensor factorization mod-
ule with pairwise interaction is employed to model the activity introduction
representation, organizer representation, and location representation jointly and
generate an integrated representation for the final prediction. An end-to-end
learning framework ensures the representation learning more focuses on the tar-
get of prediction, which is promising to achieve better performance.

Contributions. To sum up, the main contributions of this paper lie in three
aspects:

– We formulate the problem of early prediction of activity popularity in event-
based social networks, a variant of existing popularity prediction problems.

– We present a neural network approach called MOOD, which is able to learn
effective representation for text through memory network and jointly model
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Fig. 1. Analysis of activity participants. The data used in this figure comes from
Douban Event (https://beijing.douban.com/events/future-all). Figure (a) shows the
activity frequency of different number of participants and Figure (b) describes the
corresponding cumulative distribution (CD). We observe many activities have only a
few participants and about more than 90% activities have less than 100 participants,
revealing that many activities are not very appealing and it is necessary to provide
them with less attention than hot activities.

multiple representations by tensor factorization. Its key novelty is to combine
the merits of memory network and factorization model by a unified deep
learning framework.

– We conduct comprehensive experiments on real datasets to demonstrate the
benefits of our model over several strong alternatives and verify the rationality
of the model design by ablation test. To make our model repeatable, we make
the code of MOOD and the dataset available1.

2 Related Work

2.1 Popularity Prediction

According to whether considering existing sequential patterns about popularity
dynamics of targets, the methods for popularity prediction can be categorized
into dynamic popularity modeling [10,12,18,19] and static popularity model-
ing [9,13–15,20,21]. Although the former methods behave well as reported in
their experiments, they have to collect enough records of popularity dynamics
before performing prediction and thus lack of timeliness. Furthermore, it might
not be easy to obtain popularity dynamics due to restricted access of third-
parties [22], which limits the scope of application. Therefore, we consider the
research direction of the latter methods.

Some of the static popularity modeling based methods [9,20,21,23] are care-
fully designed for domain-specific tasks and could not be easily generalized to our
problem setting. The most related studies to us are [13,14], both of which con-
sider textual content and the publishers’ influence on popularity. The first study
obtains the representations of tweets by topic modeling [24] and then incorpo-
rates them into a non-negative matrix factorization framework. Consequently,
1 https://github.com/Autumn945/MOOD.

https://beijing.douban.com/events/future-all
https://github.com/Autumn945/MOOD
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its learning involves a two-stage process. The latter proposes diverse features
relevant to user and text. However, the efforts of feature engineering might be
tedious and not so necessary. In the experiments, we compare our model MOOD
with them to validate its effectiveness.

2.2 Deep Learning for Personalization and Memory Network

Deep learning methodologies have flourished since [25] and made great success
in many domains including computer vision and natural language processing. In
this paper, we pay attention to deep learning for personalization and memory
network, related to the model we proposed. On the one hand, deep learning for
personalization is promising for recommender system. It is employed to model
attributes of items [26] or replace simple inner product between factors [27]. How-
ever, most deep learning methods are not designed for text popularity prediction
problem. On the other hand, memory network [16], with recurrent attention to
basic memory units, has shown new progress in natural language processing. It
exploits interactions between query and text to perform representation learning
and improve the performance of textual question answering [17], sentiment clas-
sification [28], etc. In the pursuit of learning effective representation from textual
modality, we enhance basic memory network with both organizer and location
attentions to capture importance of each word.

3 Problem Definition

Activity is the most essential component in event-based social networks
(EBSNs) [5]. Each activity is associated with an organizer who can be a user
or an institution, a textual introduction to describe what it is about, and a
location denoting where it will be held. Organizers usually publish activities
online and other users in EBSNs can register to participate offline activities.
The above three types of factors are most critical for the popularity of each
activity. Besides, we also know the starting time of each activity. As no one can
attend an activities after it start, we can determine the corresponding ultimate
number of participants. However, we do not consider the time information when
building models, due to the reason that time seems to be not a significant factor
to influence activity popularity, which is discussed in later experiments. We leave
how to model the time information effectively as future work.

Specifically, we assume A, U , Q, and V to be activity, organizer, location,
and vocabulary sets, respectively. The vocabulary set consists of a large quantity
of words, V = {wv}v=|V|

v=1 , where |V| is the size of V. For an activity a ∈ A, we
denote its organizer as ua ∈ U , location as qa ∈ Q, and its ultimate number of
participants as r̄a ∈ Z

+
0 . To suppress large variance of participants for different

activities, we predict a rescaled version of ra just like [19,23], which can be
regarded as the popularity score of activity a and is defined as follows,

ra = log(r̄a + 1). (1)
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Fig. 2. The graphical representation of MOOD. In this figure, the gray rectangles
represent intermediate representations. Memory network is plotted as two-layered ver-
sions. ⊕ means element-wise addition of corresponding embeddings while � denotes
element-wise multiplication of connected embeddings.

Moreover, the activity a has a textual introduction, denoted as da =
{wa

1 , . . . , wa
i , . . . , wa

n}, where n is the length of da. For the ease of later clari-
fication, we further denote the training, validation, and test parts of the activity
set as Atn, Avd and Att, respectively. In a nutshell, we have {ua, qa, da, ra} for
each activity a ∈ A. With these preliminaries, we can formally define the studied
problem as below,

Problem 1 (Early Prediction of Activity Popularity). For a new activity a
to be published in event-based social networks, given its organizer ua, location
qa, and textual description da, the goal is to predict the popularity ra of this
activity.

4 Computational Model

This section first presents the overview of the proposed model. Afterwards, it
goes deeper into the details of the model to clarify it.

4.1 Model Overview

Our model MOOD is an end-to-end learning framework which takes textual
introduction, organizer, and location of the target activity as input and out-
put its predicted popularity score. Graphical illustration of MOOD is shown in
Fig. 2. Essentially, the cores of the model are the memory network and tensor
factorization modules. In each module, the model designs specific organizer and
location embeddings with different roles: attention embedding for the memory
network module and interaction embedding for the tensor factorization module.
We also consider bias embedding when generating the final prediction.
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4.2 Memory Network Module

We begin by introducing this module with an example of activity, a = {u, q, d, r},
where we omit the subscript a for simplicity. A one-layered version is first clarified
and then it can be naturally extended to multiple layers.

Memory Representation: In this module, MOOD defines memories for word,
organizer, and location, respectively. Following [16], a word wv with index v
in V is associated with two embeddings, i.e., ev ∈ R

k and fv ∈ R
k, where

k denotes the dimension of embedding. ev is leveraged to generate attention
weights and fv is adopted to generate output embedding. As a result, all of
these word embeddings constitute two embedding matrices, i.e., E ∈ R

k×|V|

and F ∈ R
k×|V|. We declare the notation êv = E:,v and it is the same for

other symbols. To further consider word position information in each activity
introduction, we follow the idea of [29] by incorporating two absolute position
encoding matrix Ep ∈ R

k×L and F p ∈ R
k×L into basic word embeddings, where

L is the length of the document.
Analogously, MOOD defines attention embedding matrices for both orga-

nizer and location, UA ∈ R
k×|U| and QA ∈ R

k×|Q|. Without losing generality,
we assume the dimension of word embedding equals to those of organizer and
location attention embeddings. Likewise, we have uA

u = UA
:,u for organizer u and

qA
q = QA

:,q for location q.

Attention for Memory: In the original vocabulary space, a textual introduc-
tion can be represented as a sequence of one-hot vectors. For the j-th word wj

in the introduction d, the one-hot vector is expressed as ŵj ∈ {0, 1}|V|. Assume
v(j) represents the index of wj in the vocabulary, we can obtain the embedding
ev(j) = Eŵj + Ep

:,j . In a similar fashion, fv(j) can be acquired as well.
Based on these embeddings, MOOD computes the attention weight of the

organizer u and location q to the word v(j) through the follow equation,

ωu,q
v(j) = (uA

u + qA
q )Tev(j). (2)

Intuitively speaking, larger ωu,q
v(j) denotes word v(j) is more relevant to its corre-

sponding organizer and location, and thus it could be more important for rep-
resenting the introduction. The addition of organizer and location embeddings
ensures the joint influence on word embedding, which shares the similar idea
adopted in the matrix factorization approach for modeling multiple factors [30].

Output Representation of Text: The central goal of the memory network
module is to obtain better representation for activity introduction. We first cal-
culate pu,qv(j) = softmax(ωu,q

v(j)), in which the probability denoting the importance
of v(j) to represent d. We regard the representation of d learned from the one-
layered memory network as o. It could be computed by cumulative sum of each
word output embedding fv(j) as follows,

o =
∑

j

pu,qv(j)fv(j). (3)
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Multi-layered Extension: Analogous to the common strategy adopted in
deep memory network [16], MOOD updates organizer and location embeddings
between each layer. Assume the embeddings of the organizer u and location q in
the k-th layer are expressed as uA,k

u and qA,k
q , respectively. For the first layer, we

have uA,1
u = uA

u and qA,1
q = qA

q . On the basis of the output from Eq. 3, iterative
updates can be formulated as below,

uA,k+1
u = uA,k

u + ok

qA,k+1
q = qA,k

q + ok.
(4)

Using the updated organizer and location embeddings, this module itera-
tively calculates attention weights until determining final introduction repre-
sentation. We have tried other more complex updating manners such as fusing
these embeddings through matrix transformation. However, they do not improve
performance notably while increasing the complexity of the model.

Suppose the total number of layers is K, then the output embedding of this
module, denoted as od, is formally defined as following,

od = oK + uA,K
u + qA,K

q (5)

where od is then fed into the tensor factorization module introduced below. From
the Eqs. 3 and 5, we can see that the learned textual representation od is deeply
personalized. Even if two introductions have the same text, their representations
could be different for different organizers and locations.

4.3 Tensor Factorization Module

In the tensor factorization module, despite the input of the introduction embed-
ding from the memory network module, MOOD defines interaction embeddings
for both organizer and location. It models the three types of embeddings together
to capture their joint influence on activity popularity. The interaction embed-
dings are expressed as uI

u ∈ R
k for organizer u and qI

q ∈ R
k for location q.

[31] suggests a tensor factorization model with pairwise factor interaction
to calculate multiple factors and obtain scalar values, denoting the preference
of users to items under specific context. Inspired by this idea, we define the
following formula to get an integrated vector representation ψ,

ψu,q
d = uI

u � qI
q + uI

u � od + qI
q � od (6)

Alternative factorization models include PARAFAC and Tucker decomposi-
tion [32]. However, we choose the one in Eq. 6 for its simplicity and good perfor-
mance in the experiments.

It is common that each organizer or location has popularity bias, regardless
of whatever activity introduction is actually about. Based on this intuition, we
introduce bias embeddings uB

u ∈ R
k for user u and qB

q ∈ R
k for location q.
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We further concatenate the bias embeddings and the integrated embedding, and
associate them with a fully connected layer to calculate the popularity r̂,

r̂ = θTσ(WT
1

[
ψu,q

d ;uB
u ; qB

q

]
+ b1) + b (7)

where σ denotes the ReLU (Rectified Linear Unit) with the form ReLU(x) =
max(0, x), W1 and b1 are the parameters of the first full connected hidden layer,
and θ and b are the parameters of the output layer. We adopt only one hidden
fully connected layer due to its already good experimental results.

4.4 Training

Now based on the above formulations, we define the objective function for later
optimization. For an activity a with the known popularity score ra in training
data, suppose r̂a is the corresponding prediction generated by our model for the
activity. We then choose square error, usually adopted in regression tasks, as the
target to be optimized,

L =
∑

a∈Atn

(ra − r̂a)2. (8)

We train the model by taking the first-order gradients of all model parameters
through back-propagation, and adopt Adagrad [33] to learn the parameters.

5 Experimental Setup

5.1 Datasets

We adopt the Douban event dataset [34,35] as the experimental data. Douban
is a very popular website, containing a large user base and various types of rich
data. Thus some previous studies have conducted experiments using the datasets
created from Douban. The Douban dataset we used has totally more than 350k
activities which cover a long time range and are held in many cities. Activities
are locally constrained by cities and different cities have different number of
candidate participants. For this reason, we first segment all the activities by
their cities. Then we choose the largest two cities, Beijing and Shanghai in China,
which contain more than 40% activities to build the two datasets we used in the
experiments.

We perform Chinese word segmentation and sparse word filtering for activity
introduction, and keep activities with the length of introduction more than five.
Moreover, following the common filtering step in personalization modeling [30],
we keep organizers and locations with more than four activities.

For later comparison, we divide the datasets into training, validation and test
sets in chronological order for each user and location. Specifically, the training set
is composed of the first half of activities for both organizers and locations. Then,
we randomly select one-third of the remaining activities as the validation set and
the remaining activities are regarded as the test set. The basic statistics of the
processed datasets are summarized in Table 1. As mentioned in the first section,
we make the source code of MOOD and anonymous data publicly available.
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Table 1. Experimental data statistics.

Data Activity Organizer Location Word Training Validation Testing

Beijing 33,923 882 1,767 79,212 21,851 4,024 8,048

Shanghai 26,133 714 1,376 65,618 16,525 3,202 6,406

5.2 Baselines

To validate the advantages of MOOD, we compare it with several alternative
baselines, some of which have strong performances.

– GloAve, OrgAve, LocAve. The three simple methods are just based on
popularity average in training data. The former one takes all activities into
computation while the later two consider them for each organizer and loca-
tion, respectively.

– HF-NMF [13] and HF-NTF. The hybrid factor non-negative matrix fac-
torization (HF-NMF) model is proposed to estimate the number of retweets
given textual content of original tweets and their authors. It utilizes the top-
ics learned from latent Dirichlet allocation (LDA) [24] as textual features and
incorporates them into a non-negative matrix factorization framework. The
original HF-NMF model only considers two types of factors, i.e. text and user.
To better adapt it to our problem setting, we extend it with pairwise inter-
action tensor factorization, ensuring the fairness of performance comparison.

– PoissonMF [36] and PoissonTF. This model utilizes the benefit of Poisson
distribution to generate count data by regarding the result of matrix factor-
ization as the expected mean of this distribution. Following the methodology
exploited in HF-NTF, we extend PoissonMF to PoissonTF to handle multiple
factors.

– FeaReg [14]. This method needs hand-crafted features to describe how
the three types of factors influence final activities’ popularity. As with the
study [14], we have designed features such as one-hot representation and TF-
IDF to characterize organizer, location, and textual description. We have tried
several standard statistical regression models (random forest, ridge regression,
etc.) and choose ridge linear regression due to its better performance.

In later experiments, we also conduct ablation test to verify the contribution
of each factor considered. We denote FeaReg (D+U) as the one only modeling
introduction (D) and organizer (U), and FeaReg (D+Q) as the one only modeling
introduction (D) and location (Q). Other notations such as MOOD (D+U) are
determined in a similar fashion.

5.3 Variants of MOOD

To verify the design rationality of the proposed model, we present two variants
of MOOD, which can be utilized to demonstrate the benefits of the proposed
two modules.
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– LSTM-TF. This model chooses Long Short-Term Memory (LSTM) Net-
work [37] instead of memory network. Since LSTM performs well in many
text modeling tasks in recent years, we compare it with MOOD to verify the
benefit of leveraging the memory network module.

– DMN. It just feeds the output of the memory network module into the final
prediction. In other words, this model does not consider tensor factorization
and the interaction embeddings of organizer and location. It can be utilized to
demonstrate the effectiveness of modeling interaction embedding with tensor
factorization module.

5.4 Implementation Details and Evaluation Metrics

We set the dimension of all the embeddings used in our model and baselines to
be 128. We set the hyper-parameters of Adagrad to be the default ones shown
in [33] and the batch size is 128. The number of layers in the memory network
module is set to 2 which performs better. L2 regularization is adopted to reduce
overfitting.

We adopt mean square error (MSE) and mean absolute error (MAE), which
are employed by many previous studies for popularity prediction [13,20,23,38].
Moreover, MSE is consistent with the optimization target we adopted for learning
MOOD and other competitors, and MAE often acts as a complement to MSE.
All the models mentioned above are run five times and the average of their
results are reported.

6 Experimental Results

In this section, we present the detailed experimental results and some intuitive
analysis to first answer the following core research questions:

Q1: Does the proposed model MOOD indeed outperform all the other competi-
tors in terms of the evaluation metrics? Does the memory network module
reveal its advantages over some alternatives? Can the tensor factorization
module really benefit the studied problem?

Q2: What is the relative importance of each type of the three factors we consider
for the activity popularity prediction problem? Does joint modeling all the
three factors achieve better performance?

On this basis, we further provide some necessary experimental discussions
about (1) the number of layers in the memory network module, (2) activity time
information, and (3) case study of the visual attention results.

6.1 Model Performance Comparison (Q1)

The overall results are shown in Table 2 with MSE and MAE metrics. By first
comparing GloAve, OrgAve, and LocAve, we can observe that both OrgAve
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Table 2. Comparisons of different models on activity popularity prediction.

Models Beijing Shanghai

MSE MAE MSE MAE

Traditional approaches

GloAve 2.0070 1.1897 1.6727 1.0850

OrgAve 0.8151 0.6605 0.9851 0.7378

LocAve 0.8573 0.6642 0.9487 0.7173

HF-NMF 0.9619 0.7288 1.0703 0.7764

HF-NTF 1.0023 0.7221 1.0564 0.7629

PoissonMF 1.0056 0.7298 1.1147 0.7875

PoissonTF 0.7779 0.6437 0.8753 0.6963

FeaReg 0.6690 0.6028 0.7739 0.6574

Deep learning models (MOOD and its variants)

LSTM-TF 0.7388 0.6322 0.8555 0.6889

DMN 0.6896 0.6109 0.7999 0.6658

MOOD (Ours) 0.6536 0.5850 0.7505 0.6360

and LocAve improve GloAve by a large margin as GloAve considers no fac-
tor of activities. It is surprising that HF-NFM and HF-NTM behave obviously
worse than OrgAve, which reflects that directly utilizing them for our studied
problem is not suitable. Although PoissonMF shows no good results as well, its
extension to tensor factorization presents obviously better results, indicating the
benefits of considering the three factors to some extent. However, the results are
still far from satisfactory, compared with the methods discussed below. One of
the reasons may be that textual feature representation and model learning are
separated into two stages, which is not very optimal.

Based on hand-crafted features, FeaReg performs best among traditional
approaches, and even better than the variants of our model, i.e., LSTM-TF and
DMN. Finally, MOOD not only performs better than DMN and LSTM-TF on
the two datasets, but also better than FeaReg. Through the above comparisons,
we can find that the integration of memory network and tensor factorization
can complement each other and achieve the best results among all the adopted
models, which can answer the question Q1.

6.2 Factor Contribution (Q2)

We investigate how the three types of factors contribute to the popularity predic-
tion in integrated models. To achieve this, ablation test is adopted by removing
one type of factor each time from textual introduction, organizer, and location.
We choose FeaReg and our model MOOD, which achieve the best performance
among traditional approaches and deep learning models, respectively.



520 W. Wang et al.

Table 3 shows MOOD outperforms FeaReg on almost every combination of
introduction, organizer, and location for the MAE metric, which further demon-
strates the advantages of MOOD. We observe that both FeaReg (U+Q) and
MOOD (U+Q) obtain better results than other models which also consider two
types of factors. This phenomenon is rational since structured organizer and
location information are easier to be modeled than unstructured text.

Table 3. Ablation test for factor contribution.

Models Beijing Shanghai

MSE MAE MSE MAE

FeaReg (U+Q) 0.7006 0.6170 0.8031 0.6728

FeaReg (D+Q) 0.7588 0.6453 0.8397 0.6873

FeaReg (D+U) 0.7339 0.6258 0.8519 0.6826

FeaReg 0.6690 0.6028 0.7739 0.6574

MOOD (U+Q) 0.6653 0.5884 0.7761 0.6501

MOOD (D+Q) 0.7832 0.6367 0.8343 0.6749

MOOD (D+U) 0.7234 0.6168 0.8329 0.6756

MOOD 0.6536 0.5850 0.7505 0.6360

Finally, we notice that modeling three types of factors jointly can achieve
better performances consistently in the two datasets, no matter which of the two
methods is selected. This phenomenon may reveal that the three factors may be
complementary to each other for the activity popularity prediction problem. In
summary, we can answer question Q2 through the above discussions.
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Fig. 3. Results of MOOD with different number of layers.

6.3 Impact of Number of Layers

We investigate how the number of layers in the memory network module impacts
prediction performance. We analyze the memory network module with different
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number of layers, and the corresponding results are introduced in Fig. 3. Obvi-
ously, the results of the module with two layers achieve the best performance
across the two datasets. We also show the visualizations of attention values given
sampled examples later, which indicate that the second layer is more focused
than the first layer. In summary, setting the number of layers to be two is a
rational choice.

6.4 Impact of Activity Time

We consider time information of activities and present a simple average-based
method called TimeAve to test it. We first discretize the continuous time space
into fixed-length time periods, similar to some previous studies [39]. We regard
one week as a cycle and one hour as a period, and get 7×24 periods. Afterwards,
we calculate the popularity average for each period in the training dataset and
generate prediction according to which period the target activity belongs to.
Figure 4 shows TimeAve is only slightly better than GloAve, but much worse
than OrgAve and LocAve, which reveals that time information is not easily
to be modeled to improve performance. The reason might be that registering
online for participating activities mainly reflects users’ preference, but not their
final decision to participate. Thus the time factor is not very important to be
considered by users, which is also empirically verified in [34].
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Fig. 4. Results of average-based methods.

6.5 Case Study for Attention Visualization

We study the difference of word attention weights in different layers of MOOD
and how the attention weights change when we associate the organizers and
locations with the introduction text not really belonging to them.

We use deeper colors to denote larger attention weights for different words
in Fig. 5. Each word is followed by an English translation and a number indi-
cating the normalized value of attention weight. As different introduction have
different length, making the average attention weights not the same. To enable
the visualization of attention weight comparison for different introduction, we
adopt a simple strategy by multiplying each word’s attention weight with the
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Fig. 5. Attention weights in different attention layers.

length of the corresponding introduction. Through this way, the average atten-
tion weight of all words equals to 1 and an attention weight less than 1 means
less attention to the corresponding word and vice versa. We observe in Fig. 5 that
more meaningful words have larger attention weights on both layers. Besides, the
attention weights in layer-2 are more centralized than those in layer-1. In a nut-
shell, we qualitatively indicate the multi-layered recurrent attention mechanism
is beneficial for our model.

Fig. 6. Different attentions to the same introduction.

We further randomly sample an activity to get its textual introduction, and
calculate the corresponding attention weights with different organizers and loca-
tions. The visualization of attention weights are shown in Fig. 6. The first part
of the figure adopts the organizer and location which the introduction belongs
to, while the second part uses an arbitrary pair of organizer and location. Each
Chinese word is followed by an English translation and a value corresponding to
its attention weight. As the figure shows, the attentions of the first part seem to
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be better and more meaningful than the second, which reveals that the attention
mechanism adopted by MOOD is personalized.

7 Conclusion

We formulate the problem of early predicting the ultimate popularity for a new
activity given its organizer, location, and introduction. To avoid tedious feature
engineering and fuse the two separate stages of feature representation and model
learning for popularity prediction, we present MOOD, a deep learning approach
which combines memory network with tensor factorization in a unified end-
to-end learning framework. It is endowed with the ability of acquiring effective
representations for text and jointly modeling the three types of considered factors
effectively. We conduct experiments on real datasets and validate the advantages
and rationalities of the proposed model.
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1. Szabó, G., Huberman, B.A.: Predicting the popularity of online content. J. Com-
mun. ACM 53(8), 80–88 (2010)

2. Figueiredo, F., Benevenuto, F., Almeida, J.M.: The tube over time: characterizing
popularity growth of youtube videos. In: WSDM, pp. 745–754 (2011)

3. Chang, B., Zhu, H., Ge, Y., Chen, E., Xiong, H., Tan, C.: Predicting the popularity
of online serials with autoregressive models. In: CIKM, pp. 1339–1348 (2014)

4. Agarwal, N., Liu, H., Tang, L., Yu, P.S.: Identifying the influential bloggers in a
community. In: WSDM, pp. 207–218 (2008)

5. Liu, X., He, Q., Tian, Y., Lee, W., McPherson, J., Han, J.: Event-based social
networks: linking the online and offline social worlds. In: SIGKDD, pp. 1032–1040
(2012)

6. Zhang, W., Wang, J., Feng, W.: Combining latent factor model with location
features for event-based group recommendation. In: SIGKDD, pp. 910–918 (2013)

7. Du, R., Yu, Z., Mei, T., Wang, Z., Wang, Z., Guo, B.: Predicting activity atten-
dance in event-based social networks: content, context and social influence. In:
UbiComp, pp. 425–434 (2014)

8. She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In:
SIGMOD, pp. 1629–1643 (2015)

9. Khosla, A., Sarma, A.D., Hamid, R.: What makes an image popular? In: WWW,
pp. 867–876 (2014)

10. Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: SEISMIC: a
self-exciting point process model for predicting tweet popularity. In: SIGKDD, pp.
1513–1522 (2015)

11. Xiao, S., Yan, J., Li, C., Jin, B., Wang, X., Yang, X., Chu, S.M., Zha, H.: On
modeling and predicting individual paper citation count over time. In: IJCAI, pp.
2676–2682 (2016)



524 W. Wang et al.

12. Rizoiu, M., Xie, L., Sanner, S., Cebrián, M., Yu, H., Hentenryck, P.V.: Expecting
to be HIP: hawkes intensity processes for social media popularity. In: WWW, pp.
735–744 (2017)

13. Cui, P., Wang, F., Liu, S., Ou, M., Yang, S., Sun, L.: Who should share what?:
item-level social influence prediction for users and posts ranking. In: SIGIR, pp.
185–194 (2011)

14. Martin, T., Hofman, J.M., Sharma, A., Anderson, A., Watts, D.J.: Exploring limits
to prediction in complex social systems. In: WWW, pp. 683–694 (2016)

15. Dimitrov, D., Singer, P., Lemmerich, F., Strohmaier, M.: What makes a link suc-
cessful on Wikipedia? In: WWW, pp. 917–926 (2017)

16. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks.
In: NIPS, pp. 2440–2448 (2015)

17. Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong,
V., Paulus, R., Socher, R.: Ask me anything: dynamic memory networks for natural
language processing. In: ICML, pp. 1378–1387 (2016)

18. Shen, H., Wang, D., Song, C., Barabási, A.: Modeling and predicting popularity
dynamics via reinforced poisson processes. In: AAAI, pp. 291–297 (2014)

19. Wu, B., Mei, T., Cheng, W., Zhang, Y.: Unfolding temporal dynamics: predicting
social media popularity using multi-scale temporal decomposition. In: AAAI, pp.
272–278 (2016)

20. Chen, J., Song, X., Nie, L., Wang, X., Zhang, H., Chua, T.: Micro tells macro:
predicting the popularity of micro-videos via a transductive model. In: MM, pp.
898–907 (2016)

21. Zhang, W., Wang, W., Wang, J., Zha, H.: User-guided hierarchical attention net-
work for multi-modal social image popularity prediction. In: WWW, pp. 1277–1286
(2018). https://dl.acm.org/citation.cfm?id=3186026

22. He, X., Gao, M., Kan, M., Liu, Y., Sugiyama, K.: Predicting the popularity of web
2.0 items based on user comments. In: SIGIR, pp. 233–242 (2014)

23. Li, C., Ma, J., Guo, X., Mei, Q.: DeepCas: an end-to-end predictor of information
cascades. In: WWW, pp. 577–586 (2017)

24. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. JMLR 3, 993–1022
(2003)

25. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

26. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender
systems. In: SIGKDD, pp. 1235–1244. ACM (2015)

27. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering.
In: WWW, pp. 173–182 (2017)

28. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory
network. In: EMNLP, pp. 214–224 (2016)

29. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NIPS, pp. 6000–6010 (2017)

30. Aizenberg, N., Koren, Y., Somekh, O.: Build your own music recommender by
modeling internet radio streams. In: WWW, pp. 1–10 (2012)

31. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for per-
sonalized tag recommendation. In: WSDM, pp. 81–90. ACM (2010)

32. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor
Factorizations - Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley, Hoboken (2009)

33. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learn-
ing and stochastic optimization. JMLR 12, 2121–2159 (2011)

https://dl.acm.org/citation.cfm?id=3186026


Early Prediction of Activity Popularity 525

34. Zhang, W., Wang, J.: A collective Bayesian poisson factorization model for cold-
start local event recommendation. In: SIGKDD, pp. 1455–1464 (2015)

35. Yin, H., Hu, Z., Zhou, X., Wang, H., Zheng, K., Nguyen, Q.V.H., Sadiq, S.: Discov-
ering interpretable geo-social communities for user behavior prediction. In: ICDE,
pp. 942–953. IEEE (2016)

36. Ma, H., Liu, C., King, I., Lyu, M.R.: Probabilistic factor models for web site
recommendation. In: SIGIR, pp. 265–274. ACM (2011)

37. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

38. Ahmed, M., Spagna, S., Huici, F., Niccolini, S.: A peek into the future: predicting
the evolution of popularity in user generated content. In: WSDM, pp. 607–616
(2013)

39. Yuan, Q., Zhang, W., Zhang, C., Geng, X., Cong, G., Han, J.: PRED: periodic
region detection for mobility modeling of social media users. In: WSDM, pp. 263–
272 (2017)


	Factorization Meets Memory Network: Learning to Predict Activity Popularity
	1 Introduction
	2 Related Work
	2.1 Popularity Prediction
	2.2 Deep Learning for Personalization and Memory Network

	3 Problem Definition
	4 Computational Model
	4.1 Model Overview
	4.2 Memory Network Module
	4.3 Tensor Factorization Module
	4.4 Training

	5 Experimental Setup
	5.1 Datasets
	5.2 Baselines
	5.3 Variants of MOOD
	5.4 Implementation Details and Evaluation Metrics

	6 Experimental Results
	6.1 Model Performance Comparison (Q1)
	6.2 Factor Contribution (Q2)
	6.3 Impact of Number of Layers
	6.4 Impact of Activity Time
	6.5 Case Study for Attention Visualization

	7 Conclusion
	References




