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Abstract. Personalized medicine (PM) aiming at tailoring medical
treatment to individual patient is critical in guiding precision prescrip-
tion. An important challenge for PM is comorbidity due to the complex
interrelation of diseases, medications and individual characteristics of the
patient. To address this, we study the problem of PM for comorbidity
and propose a neural network framework Deep Personalized Prescrip-
tion for Comorbidity (PPC). PPC exploits multi-source information from
massive electronic medical records (EMRs), such as demographic infor-
mation and laboratory indicators, to support personalized prescription.
Patient-level, disease-level and drug-level representations are simultane-
ously learned and fused with a trilinear method to achieve personalized
prescription for comorbidity. Experiments on a publicly real world EMRs
dataset demonstrate PPC outperforms state-of-the-art works.
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1 Introduction

Restricted by the traditional care delivery models, many doctors still prescribe
therapies based on their own experience and population averages, which causes
inefficient care for significant portions of patients [1]. As reported from the litera-
ture, 75% patients on average take ineffective cancer drugs and 70% patients take
ineffective Alzheimer’s drugs [2]. Personalized medicine (PM) which tailors the
medical treatment to individual patient is promising to guide precision prescrip-
tion [3]. An extremely important challenge for PM is comorbidity. Comorbidity
stands for two or more complex disease conditions in the same patient and has
complex interrelation of diseases, medications and individual characteristics of
the patient [4,5]. Some researches show comorbidity is reported in 35% to 80% of
all ill people [6,7]. In the United States, about 80% of medicare costs are caused
by patients with 4 or more chronic diseases [8]. Recently with the availability of
massive electronic medical records (EMRs), exploring the healthcare data has
great potential to support intelligent personalized prescription for comorbidity.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-319-91458-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91458-9_1&domain=pdf


4 L. Wang et al.

Researches about prescription based on EMRs are mainly divided into
pattern-based and model-based approaches. Pattern-based methods recommend
prescriptions by measuring the similarities among records of patients [9,10].
These methods are challenging to learn the relation of patients’ information (e.g.,
disease, demographic information, lab information, etc) and medications. Model-
based methods include decision-theoretic methods [11] and statistical methods
[12]. But these methods only focus on one specific disease. Recently, two deep
models are proposed to learn a nonlinear mapping from multiple diseases to
multiple drugs based on EMRs [13,14], and achieve significant improvements.
Without considering patient-specific information, these deep methods recom-
mend constant-treatment for patients with same diseases. However, it is not in
line with real situations. As shown in Table 1, the two patients are with the same
diseases. Due to the different physiologic states, they take different treatments.

Table 1. The difference and intersection treatments of two patients with same diseases.

Diagnosis Intersection treatments Difference treatments

Pure hypercholesterolemia,

Intermediate coronary syndrome,

Hypertension NOS, Coronary

atherosclerosis of native coronary

artery

Meperidine, Neostigmine,

Phenylephrine HCl, Ranitidine,

Oxycodone-Acetaminophen,

Metoclopramide, Calcium

Gluconate, Glycopyrrolate,

Magnesium Sulfate, Milk of

Magnesia, Nitroglycerin, Aspirin

EC, Acetaminophen, Sucralfate,

Bisacodyl, Docusate Sodium,

Potassium Chloride, Furosemide,

Morphine Sulfate, Aspirin,

Metoprolol

Propofol, Vancomycin HCl,

Ibuprofen, Midazolam HCl,

Chlorpheniramine Maleate,

Hydrochlorothiazide, Hespan,

Nitroprusside Sodium,

Ondansetron, Diphenhydramine

HCl

CefazoLIN, Insulin Human

Regular, Propofol, Docusate

Sodium, Dextrose 50%, Insulin,

Simvastatin, Sodium Chloride

0.9% Flush

There are two important issues remained in the aforementioned methods. (1)
Non-personalized medicine. Existing methods for comorbidity ignore massive
individual characteristics of the patient, such as demographic and laboratory
information, which fail to recommend patient-specific prescription. (2) Lack of
medical knowledge. Medical knowledge can guide us to learn a more effective
and interpretable model. Furthermore, learning different “weights” of multiple
diseases for comorbidity patients is also a difficult issue [15].

To tackle these issues, we integrate multi-source patient-specific informa-
tion to learn patient-level representation. The representations and severities of
multiple diseases are learned by employing medical knowledge and attention
mechanism. The main contributions of this paper can be summarized as follows:

– To obtain the interdependencies among diseases, medications and individual
characteristics of the patient, we design a deep learning model to integrate
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multi-source information to learn the patient-level, disease-level and drug-
level representations simultaneously, and fuse them with a trilinear method.
(for comorbidity challenge)

– Patient-level representation is learned based on multiple patient-specific
information, such as demographic and laboratory information (for issue 1).
Disease-level representation is obtained by medical ontologies, where an atten-
tion mechanism is used to learn the different severities of multiple diseases
(for issue 2).

– We evaluate our method over a real world EMRs MIMIC-3 and show that it
outperforms state-of-the-art approaches for prescription.

The rest of this paper is organized as follows. We summarize the related work
in Sect. 2. The proposed method is presented in Sect. 3. Experimental results and
analysis are introduced in Sect. 4. We conclude our work in Sect. 5.

2 Related Work

Computational methods that leverage EMRs to support healthcare begin to draw
attention in recent years. To learn good representations of diagnosis and pre-
scription, several models from the fields, such as image processing and machine
translation, are also leveraged to represent medical ontology.

Diagnosis is first handled by neural networks in 1989 [16]. Recently, deep
models such as multi-layer perceptron (MLP) and recurrent neural networks
(RNN) are applied to diagnose life-threatening diseases. Lipton et al. are the
first to apply long short-term memory (LSTM) [17] to multi-label diagnoses,
which takes the clinical variables as input to predict the diagnosis in intensive
care unit setting [18]. A gated recurrent unit (GRU) [19] model is used to early
detect heart failure with the row value of patients’ records [20]. However, for the
distinct tasks and different input, these methods can not be directly applied to
prescription.

Prescription settled by pattern-based methods is to identify the treatments
based on the similarities among records of patients [9,10,21]. As for model-based
studies, Cheerla and Gevaert [12] use SVM to recommend proper treatments for
pan-cancer patients with microRNA. Concurrently, Bajor and Lasko use a GRU
model to predict the total medications for multiple diagnosis records of a patient
to check the EMRs records [13]. However, the disease representations learned by
Bajor et al. are not well aligned to the medical knowledge [13]. Zhang et al. also
design a deep learning model LEAP to predict safe prescription with the input
of multiple diseases [14]. Bajor’s method and LEAP are established as state-
of-the-art approaches, but they ignore the patient-specific information. These
approaches are not effective for personalized prescription in comorbidity for: (1)
due to the complex and abstruse correlation among multiple diseases, it is hard
to measure their similarities; (2) ignoring the individual information of patients,
the methods may recommend the same medications for patients with the same
disease. As shown in Fig. 1, it is not in line with the real situation.
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Neural Attention Model is designed for solving neural machine transla-
tion tasks which cause a bottleneck by using a fixed-length vector to represent a
sentence [22]. To predict a target word, attention model automatically focuses on
the related words in the source sentence. Recently, it is applied to image process-
ing [23], dialog systems [24], machine translation [22] and popularity prediction
[25]. Retain [26] is the pioneer work to apply attention mechanism to healthcare,
which considers the historical visit records of patients in a reverse time to learn
attentions of different visits.

Distributed Representation for language is proposed to predict the neigh-
bors of a word using a simple neural network such as Skip-gram and Continu-
ous Bag-of-Words (CBOW) [27]. In medical domain, Riccardo et al. propose an
unsupervised method to learn the patients representations using a three-layer
stack of denoising autoencoders [28]. To improve the interpretation of repre-
sentations, GRAM employs an attention mechanism based on the hierarchical
medical ontology to learn the representation of diseases and drugs [29]. However,
GRAM overlooks the severity of diseases when the patients suffer from multiple
diseases. Indeed, these works mainly focus on learning representation instead of
prescription.

This paper extends prescription methods in a number of important dimen-
sions, including: (1) a deep learning model to learn the patient-level, disease-
level, drug-level representations simultaneously from multi-source information
of EMRs to achieve patient-specific prescription for comorbidity, and (2) an
effective representation of comorbidity learned by hierarchical disease ontologies
and a neural attention model.

3 Personalized Prescription for Comorbidity

In this section, we first define the notations of medical ontology and EMRs
data, followed by an overview of our approach. Then we introduce the detailed
components of learning disease, patient and drug representations, and a fusion
method to integrate these representations for personalized prescription.

3.1 Preliminaries

Considering a set of N patients P = {p1, p2, ..., pn, ..., pN}, a patient pn is specified
by his or her patient-specific information Pn (demographic and laboratory infor-
mation), diagnosis information Dn and medication information Yn, where Pn =
{pagen , pheartraten , ...},Dn = {dn1 , dn2 , ..., dni , ..., dnI }, Yn = {yn

1 , yn
2 , ..., yn

k , ..., yn
K}. dni

denotes the i-th disease in Dn and yn
k ∈ {0, 1} denotes whether a medication in

the k-th medicine class treated for the patient pn. G is a directed acyclic graph
(DAG) of disease (coded in ICD-9) ontology1. We only focus on three main lev-
els of ICD-9 ontology (1-digit nodes, 3-digit nodes and leaf-nodes) in this paper
to ensure good generalization. Also, the three levels are often used to identify

1 http://bioportal.bioontology.org/ontologies/ICD9CM.

http://bioportal.bioontology.org/ontologies/ICD9CM
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Fig. 1. General framework of PPC.

pharmacological subgroups. There is a hyponymy relation between the high level
and low level nodes in G, where the leaf-node ci1 (in level-1) represents the i-th
disease dni , and the non-leaf nodes ci2 (in level-2), ci3 (in level-3) show a concept
generalized from their child-nodes. Inspired by [29], each node in the three levels
is associated with a basic embedding, where eij represents the basic embedding
of node cij in j-th level.

PROBLEM DEFINITION (Personalized Prescription for Comorbidity.)
For a patient pn, given his or her patient-specific information Pn and diseases

Dn, where Pn = {pagen , pheartraten , ...},Dn = {dn1 , dn2 , ..., dnI }, the problem is to
predict the personalized treatment Yn (Yn = {yn

1 , yn
2 , ..., yn

K}) for the patient.

3.2 Algorithm Overview

As shown in Fig. 1, our approach is a deep learning model which includes three
main components: C1: learning to represent the diagnosis, C2: learning to rep-
resent the patient, C3: fusing representations with a trilinear method.

PPC employs the hierarchical structure of disease ontology in knowledge
graph G to learn a interpretable representation of disease dni . It first finds a path
from the leaf-node ci1 to the highest level node ci3 in G. Then, PPC concatenates
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the basic embedding vectors eij ∈ R
m (j = 1, 2, 3) of the three nodes as the

representation êi ∈ R
3m of disease dni . Combing the information of ancestors

and children helps to learn a robust and comprehensive representation. Due to
the patients in comorbidity have more than two diseases, playing more attention
on severity diseases is beneficial to alleviate the symptoms. We use attention
mechanism [22] to learn the different severities of diseases and represent the
diagnosis of the patient as a single embedding dn. Simultaneously, we learn
the patient representation using a 2-layer MLP with the input Pn, and the
medication representation mk (k = 1, 2, ...,K) is learned by a 1-layer MLP.
To learn the interdependencies among diseases, medications and the patient,
a trilinear fusion method is adapted to integrate the three representations to
predict the personalized treatments for comorbidity.

3.3 C1: Learning to Represent the Diagnosis

Diagnostic information in EMRs consists of the patients’ diseases. Medical ontol-
ogy in this paper is used to facilitate the representation of the diagnosis. We first
concatenate the three basic embeddings into a single embedding êi ∈ R

3m:

êi = [ei1,ei2,ei3], (1)

ei1 = Wemb1ci1, ei2 = Wemb2ci2, ei3 = Wemb3ci3,

where êi is the embedding of disease dni , cij ∈ R
D is the one-hot representation

of node cij (j = 1, 2, 3), Wemb1, Wemb2 and Wemb3 ∈ R
m×D are the embedding

matrixes corresponding to ci1, ci2 and ci3 respectively.
Then, we use the convex combination of multiple diseases to represent the

diagnosis of the patient:

dn =
I∑

i=1

αiêi,
I∑

i=1

αi = 1, αi ≥ 0 for dni ∈ Dn, (2)

where I is the number of diseases in Dn. αi is the attention weight of the disease
dni , which also indicates the severity of dni for the patient. The scalar αi is
generated as follows,

αi =
exp(f(êi))
I∑

j=1

exp(f(êj))

. (3)

Using a 1-layer GRU and a 1-layer MLP, we obtain f(êi) as follows,

(g1, ...,gi, ..,gI) = GRU(ê1, ..., êi, ..., êI), (4)

hi = wT
k gi + bk, (5)
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f(êi) = tanh(wi[h1, h2, ..., hI ]T + bi), for i = 1, 2, ..., I, (6)

where gi ∈ R
p is the hidden layer of GRU2. hi is the hidden layer of MLP and

wk ∈ R
p, bk, wi ∈ R

I , bi are parameters to learn. The GRU layer learns the
attentions of diseases separately, while the MLP learns the attentions of diseases
jointly.

The final representation of diseases dn ∈ R
m can also be calculated by Cn ∈

R
3D×I as shown in Eq. (8), where α ∈ R

I is the attention vector. As shown
in Eq. (9), Wemb ∈ R

m×3D is the concatenation embedding matrix of disease
ontologies in the three levels. Overall, we represent the diagnosis of patients by
employing the hierarchical structure of disease ontologies in knowledge graph G
and learning different severities of multiple diseases.

dn = Wemb(Cnα) (7)

Cn = [ĉ1, ĉ2, ..., ĉI ], where ĉi = [ci1, ci2, ci3], i = 1, 2, ..., I (8)

Wemb = [Wemb1,Wemb2,Wemb3]. (9)

3.4 C2: Learning to Represent the Patient

Demographic and laboratory information belongs to patient-specific indicators.
Demographic information consists of age, gender, height, weight, language, eth-
nicity, etc. Laboratory indicators include blood pressure, temperature, blood
oxygen saturation, etc. The patient-specific information is important to the
design of therapeutic regimen and dosage.

The demographic information is denoted as E:

E = {Eage, Eheight, ..., Eweight},

and the laboratory indicators are denoted as L:

L = {Lblood−pressure, Ltemperature, ..., Lph}.

Each element in E and L indicates a variable of Pn. Let p̂n be the intermediate
representation of patients where the discrete variables are represented as one-hot
codes, and the continuous variables keep invariant.

We use a 2-layer MLP to learn the patient representation:

hz = f(Wzp̂n + bz), (10)

pn = f(Wuhz + bu), (11)

where Wz and bz are the parameters of first layer, Wu and bu are parameters
of second layer, f is the activation function ReLUs, and pn ∈ R

n is the final
representation of the patient.
2 We have also examined LSTM and other activation functions to learn to represent

diagnosis, but they have less efficiency and worse performance.
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3.5 C3: Fusing Representations with Trilinear Method

We propose a trilinear fusion method to integrate different sources of informa-
tion. The input of the trilinear fusion method consists of three types of variables:
diagnosis Cn, patient-specific information pn and candidate medications mk

(k = 1, 2, ...,K), where mk ∈ R
K is the one-hot representation of the medicine.

Cn is the concatenation of one-hot representations of diseases as shown in Eq. (8).
The trilinear fusion method characterizes such a specific treatment event by con-
sidering the interdependencies among medications, the patient and diagnosis.
Assume hk,n is the index of the probability of the medication mk recommended
for the patient pn, and the probability is shown in Eq. (13). The trilinear method
is described as follows,

hk,n = (Wemb(Cnα))T(Wmmk � Wlpn), (12)

where � denotes the element-wise multiplication and α, Wemb, Wm ∈ R
m×K ,

Wl ∈ R
m×n are parameters to learn. To predict whether to recommend drug

mk for patient pn, we use a sigmoid function to predict the probability of rec-
ommending mk as follows:

fk,n =
1

1 + e−hk,n
. (13)

3.6 Objective Optimization

To solve this multi-label problem, we optimize the loss function of the K labels
simultaneously:

Loss =
1
N

1
K

N∑

n=1

K∑

k=1

l(fk(Cn,mk,pn), yk,n), (14)

l(fk,n(Cn,mk,pn), yk,n) = −(1 − yk,n) ∗ log(1 − fk,n) − yk,n ∗ log(fk,n), (15)

where l(fk,n(Cn,mk,pn), yk,n) is the cross-entropy loss, N is the number of
patients in training set. If we believe the solutions with small parameters are
more general, we may optionally add a l1-penalty term, which will often make
the parameters be nonzero in only a few states to prevent overfitting3.

4 Experiment

In this section, we conduct experiments to evaluate our proposed method. We
first report the dataset and models for comparison, followed by quantitative
and qualitative measurements. Quantitative measurements include the common
multi-label metrics and mean Jaccard. Qualitative measurements focus on how
well the presented method solves the issues mentioned in Sect. 1, such as person-
alized prescription analysis, the interpretable representation of diseases analysis
and the effect of the diseases’ severities learned by attention mechanism.
3 We have examined both l1-norm and l2-norm, and find their performance are similar.
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4.1 Dataset Description

The experiments are conducted on a public EMRs dataset MIMIC-3 [30].
MIMIC-3 contains 43K patients in critical care units during 2001 and 2012.
There are 6,695 distinct diseases and 4,127 drugs in MIMIC-3. The median
number of diseases of each record is 9 (Q1–Q3:6–15). Following the procedure
adopted in [13], we extract the top 1,000 most medications and top 2,000 most
diseases (ICD-9 codes) in the first 24 h after the admission of patients. Because
the patient states always change after 24 h and the first 24 h are the most critical
time of the patient. These medications and diseases cover 85.4% of all medication
records and 95.3% of all disease records. The medications in patient’s diagnosis
records are coded in NDC4. To obtain the hierarchical information of medica-
tions, we map the medication code from NDC into the third level of ATC5 using
the public tool6. ATC is another medication code which is hierarchically struc-
tured by anatomic and therapeutic classes. Finally, we obtain 180 ATC codes,
which is also the number of labels in our multi-label classification task.

For learning the patient representation, we choose 8 demographic features:
gender, age, weight, height, religion, language, marital status and ethnicity and
11 clinical variables (followed by the physician’s suggestion): diastolic blood
pressure, Glascow coma scale, blood glucose, systolic blood pressure fraction
of inspired O2, heart rate, pH, respiratory rate, blood oxygen saturation, body
temperature, and urine output. These variables are first rescaled to z-scores,
then rescaled to [0,1]. We extract the results of clinical variables in the first 24 h
after the patients admitted to the intensive care unit. We further fill the miss-
ing values by sampling them from the clinically normal interval as defined by
clinical physicians. It is reasonable because clinicians often think the variables
are norm and do not measure them [18]. For good generalization, we remove the
records with more than 10 missing variables. Finally, we obtain 39,260 patients,
and randomly divide the dataset for training, validation and testing by the ratio
of 80/10/10.

We use the common metrics of multi-label, which contains micro under the
ROC curve (micro-AUC), macro under the ROC curve (macro-AUC), label rank-
ing average precision score and label ranking loss to promise fair and honest
evaluation [31,32]. Also, we use mean Jaccard to measure the combination of
recommended drugs as [14]. Initial PPC and PPC are our proposed methods,
while the others are baselines. We describe these methods in detail as follows:

– Popularity-20 (POP-20): This is a patten-based method, which considers
the top-k most frequent medications prescribed for each disease as predictions.
We set K to be 20 for its best performance on validation dataset.

– Random Forest (RF): This is a classical machine learning method for
multi-label problem. To reduce the massive computation, we use scalar to
represent the different diseases, and train the model with 180 independent

4 http://www.fda.gov/Drugs/DevelopmentApprovalProcess/.
5 http://www.whocc.no/atc/structure and principles/.
6 https://www.nlm.nih.gov/research/umls/rxnorm/.

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/
http://www.whocc.no/atc/structure and principles/
https://www.nlm.nih.gov/research/umls/rxnorm/
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forests, each forest is trained with the total diseases and predict one of the
180 treatments.

– LM [13]: This is a non-personalized prescription method, which uses a 3-
level-MLP to recommend treatments for patients. The goal of LM is to check
the errors and omissions in EMRs. The input is historical diseases of the
patient in the EMRs records. The output is a single vector which is used to
predict the medications treated for the historical diseases of the patient. To
test the performance of LM, we use the current diseases of a patient as input
and predict the medications for current diseases.

– LG [13]: This model is with the same setting as LM. But it uses a GRU
model instead of MLP.

– LEAP [14]: LEAP uses a MLP framework to train a multi-label model
which uses multiple diseases to predict multiple medications and considers
the dependence of medications.

– Knowledge-based LM (LMK): We extend LM by incorporating hierar-
chical structure of disease ontology. The results of LMK can be utilized to
test the effectiveness of considering medical ontology.

– Personalized-infor-based LM (LMKF): We further extend LMK by con-
catenating demographic information of patients, clinical measurements and
diseases together as input. The results of LMKF can be used to verify the
benefit of considering the patient-specific information.

– initial-PPC (i-PPC): It is with the same setting as our model, except using
GRAM [29] to learn the representation of diseases.

– PPC: This is the model proposed in this paper. We aim at comparing it
with other methods to demonstrate its advantages in multi-aspects. The basic
embeddings ei,j of i-PPC and PPC are both randomly initialized.

The main goals of this section is to answer the following core questions, which
guide the design of the experiments.

1. Prediction Accuracy: Can patient-specific information support more accu-
rate prescription than other non-personalized prescription? (for issue 1)

2. Ablation Study: What is the contribution of each factor (diagnosis, patient,
medicine information) to PPC?

3. Embedding Analysis: Does medical knowledge help to learn a better rep-
resentation? (for issue 2)

4. Attention Analysis: How well does PPC learn the different severities among
diseases?

4.2 Prediction Accuracy

Table 2 shows the performance of aforementioned methods on MIMIC-3. LMK
outperforms LM by 2%–5.8%. This result shows combing medical knowledge to
learn representations of diseases is significant to improve the accuracy of pre-
scription. LMKF outperforms LMK by 0.1%–2.4%, which verifies the precision
treatment is benefit from patient-specific information. Moreover, PPC consis-
tently outperforms other baselines. For non-personalized deep models, such as
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LEAP, LG and LM, PPC achieves 0.7%–4.1% improvement, because patient-
specific information can help to prescribe more effective medications by identi-
fying different physiologic states and characteristics of patients. It also outper-
forms LMKF by 0.2%–4.2% because the trilinear fusion method endows PPC
with ability of learning rich and integrated representations based on different
sources of information. Compared to i-PPC, PPC also achieves better improve-
ments, because learning the different severities can help PPC pay more attention
to important diseases.

Table 2. Performance comparisons on test sets for comorbidity prescription (%).

Method Micro-AUC Macro-AUC Label ranking
avg. precision

Label ranking
loss

Jaccard

POP-20 76.2 55.8 52.7 40.8 37.8

RF 88.3 71.8 60.2 9.8 38.5

LM 89.2 73.2 62.8 9.4 36.6

LG 91.7 77.3 67.0 7.8 39.3

LEAP 92.0 78.9 67.5 7.6 40.8

LMK 92.1 79.0 68.2 7.4 40.1

LMKF 92.2 81.4 68.3 7.1 40.5

i-PPC 92.7 81.0 68.6 7.0 41.3

PPC 93.1 83.0 69.9 6.90 44.7

As for the other baselines, POP-20 is not effective due to its incapability
of learning relation between multiple diseases and medications. RF works poor
than deep models, because it fails to learn high-level representations of diseases.

4.3 Ablation Study

We conduct ablation study here to verify the contributions of the three types of
information employed in this study. More specifically, we denote PPC-m, PPC-
d and PPC-p as the variants of PPC by removing medical information, diag-
nosis information, and patient-specific information respectively. As the results
presented in Table 3, all the information makes a positive contribution to pre-
cision treatment, where the contribution of diagnosis information is the most
significant.

4.4 Embedding Analysis

To evaluate the effectiveness of disease representations learned by PPC, we use
t-SNE [33] to visualize the final embeddings of 2000 diseases in our experiments.
As shown in Fig. 2, different colors correspond to different categories of diseases
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Table 3. Factor contribution analysis for PPC (%).

Method Micro-AUC Macro-AUC Label ranking
avg. precision

Label ranking
loss

Jaccard

PPC-m 92.9 82.7 68.5 7.3 44.1

PPC-d 89.5 70.8 61.1 9.8 37.7

PPC-p 92.3 81.3 68.6 7.1 43.2

PPC 93.1 83.0 69.9 6.90 44.7

in the highest level of G. The names of the categories are represented aside the
color-bar. The result shows that the embeddings of diseases in different categories
can be roughly separated. In addition, we randomly select two impact point sets
in Fig. 2, where the blue digits indicate the leaf-ICD-9 codes. The result shows
that the codes are indeed related to their neighbors. However, the most related
codes are not with the shortest distance because of the insufficient data. In
deed, training the embeddings always need sufficient data, for example, training
Skip-gram requires large amount of documents.

4.5 Attention Analysis

The attentions of the diseases can be explained intuitively using a randomly
chosen case. Case 1: a patient with 13 diseases and 39 drugs. As mentioned
in Sect. 1, learning different “weights” of multiple diseases is still a significant
problem to be well addressed. In this section, we validate the availability of
diseases’ attentions using the domain knowledge and the amount of medications.

Analysis Based on the Domain Knowledge: As verified by a doctor, this is
a patient with two main diseases: Parkinson and Chronic airway obstruction.
More specifically, the patient is with diseases and symptoms such as: Parkinson,
Chronic airway obstruction, depression, constipation, eye infections, esophagitis,
indigestion, pneumonia, respiratory failure and congestive heart failures. About
1/3 of Parkinson patients suffer from severe depression and may cause constipa-
tion, abnormal gastrointestinal motility, and some eye diseases. Therefore, part
of these symptoms and diseases may be caused by Parkinson’s disease. In addi-
tion, Parkinson’s patients are difficult to clean up the sputum, who easily infect
pneumonia. Chronic airway obstruction which is unrelated to Parkinson’s dis-
ease, may cause pulmonary heart disease and lung inflammation. Thus in this
case, the patient also suffer from pneumonia, respiratory failure and congestive
heart failure. Overall, Parkinson’s disease and Chronic airway obstruction are
the main diseases in this case and most of the other diseases are complications.
As shown in Fig. 3, Parkinson’s disease achieves the most attention (α = 0.12),
while Chronic airway obstruction obtains the third (α = 0.094).

Analysis Based on the Amount of Medications: As shown in Fig. 4, to validate
our results, we choose level-1 ATC codes to represent the medications. The
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infectious and parasitic
neoplasms
endocrine, metabolic etc
Blood/blood-forming organs
mental disorders
nervous system
sense organs
circulatory system
respiratory system
digestive system
genitourinary system
complications
Skin/subcutaneous tissue
Musculoskeletal sys etc
congenital anomalies
perinatal conditions etc
symptoms, signs conditions
injury and poisoning
external causes of injury
supplemental classification

Neutropenia, unspecified
Drug induced neutropenia

Neutropenia

Acquired hemolytic 
anemia, unspecifiedOther specified aplastic anemias (drug, infection etc)

Other specified aplastic anemias

Basilar artery Occlusion

Multiple and bilateral Occlusion
Atherosclerosis of 
the extremities with
intermittent claudication Other venous embolism and thrombosis (other specified veins)

Atherosclerosis Of renal artery

Other venous embolism and thrombosis 

Fig. 2. The visualization (t-SNE, 2-D) of diseases’ embeddings learned by PPC. Dif-
ferent colors correspond to different categories of disease in the highest level of G. The
name of categories are represented aside the color-bar. The blue digits indicate the
leaf-ICD-9 codes (diseases) of two randomly point sets. (Color figure online)

Fig. 3. Attentions learned from a comorbidity patient. Each rectangle represents a dis-
ease of this patient. The different color shades shows the volume of the attention of
the disease. (DHF: Diastolic heart failure Acute on chronic, UPE: Unspecified pleu-
ral effusion, CHF: Congestive heart failure, PD: Parkinson’s disease, HYPS: Hypos-
molality and/or hyponatremia, HYPO: Hyperpotassemia, LLR: Lymphoid leukemia
in remission, AU: Anemia, unspecified, POU: Pneumonia, organism unspecified, EH:
Essential hypertension, UAFA: Upper arm and forearm Other cellulitis and abscess,
CAO: Chronic airway obstruction, ARF: Acute respiratory failure.)

Fig. 4. Distribution of the number of drugs in this case. Abscissa represents the highest
level of drug codes (ATC) of this case. The descriptions of partial codes are: A: Ali-
mentary tract and metabolism, R: Respiratory system, J: Antiinfectives for systemic
use, B: Blood and blood forming organs. C: Cardiovascular system.
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largest amount of the drugs is mainly targeted for disease of Alimentary tract
and metabolism (A). As mentioned before, Parkinson is most likely to cause
gastrointestinal disease and constipation. So that these drugs are prescribed for
symptom of Parkinson. The second largest amount of the drug is for respira-
tory system (R), such as Chronic airway obstruction and Pneumonia. These
results also explain that the main diseases are Parkinson and Chronic airway
obstruction, which is in line with our experiment results.

Table 4. Prescriptions for two patients with same diseases.

Diagnosis Methods Recommended treatments

Secondary malignant
neoplasm of brain and spine,
breast malignancy, Other
convulsions, Secondary
malignant neoplasm of lung,
Hypertension Cerebral edema

PPCp1 B05C, B05X, A10A, C08C, A02B,
N03A, N02A, N02B, C02D, A12C,
A06A, C03A, C03C

LEAPp1 B05C, B05X, A02B, N03A, N02A,
N02B, A12C, A06A

LGp1 B05C, B05X, A10A, A02B, N02A,
N02B, A12C, A06A

PPCp2 B05C, B05X, A10A, C08C, A02B,
N03A, A04A, N02A, N02B, C02D,
A12C, A06A

LEAPp2 B05C, B05X, A02B, N03A, N02A,
N02B, A12C, A06A

LGp2 B05C, B05X, A10A, A02B, N02A,
N02B, A12C, A06A

4.6 Personalized Prescription Analysis

With the subjectively examining performance on 30 randomly selected cases,
we find the favorably performs of PPC comparing against other baselines. We
choose one of these cases for analysis. In Fig. 5, we show 2 patients with same
diseases, where the diseases and mediations recommend by 3 prescription meth-
ods are shown in Table 4. For the first patient, PPCp1 recommends a set of
medications with 78.6% coverage, where pi (i = 1, 2) represents the i-th patient.
The recommendation coverage of LEAPp1 and LGp1 are both 42.9%. For the
second patient, PPCp2 recommends a set of medications with 100% coverage.
In contrast, the coverage of LEAPp2 and LGp2 are 88.9% and 77.8%. The case
is also the evidence of patient-specific medications. Due to the different phys-
iologic states of patients, the mediations which the patients need are changed.
In this case, the first patient is with systolic blood pressure 142 mmHg, while
the second patient is 117 mmHg. Considering the patient-specific information,
PPC recommends the drugs for p1 with C08C, C02D, C03A, C03C, which tar-
gets hypertension. For p2, these drugs were largely reduced. However, as shown
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Fig. 5. Medication predictions confidence of two patients with same diseases. ATC
codes on abscissa axis represents the prescriptions of doctors, where the hight of the
bar indicates the prediction confidence of the three methods. We predict the medicine
with the confidence >=0.5.

in Table 4, LEAP and LG that only consider diseases for prescription always
recommend the same drugs for the patients with same diseases and ignore the
hypertension states of the patients.

5 Conclusion

In order to solve the challenge and issues of personalized prescription for comor-
bidity, we propose an end-to-end deep learning model PPC. PPC integrates dif-
ferent sources of information to jointly learn representations of patients, diseases
and medications and fuses them with a trilinear method to realize personalized
prescription. Multiple patient-specific information is exploited to learn patient-
level representation, and medical knowledge is combined to learn disease-level
representation where an attention mechanism is used to learn different severities
of comorbidity. Exploiting multi-source patient-specific information, PPC can
recommend customized treatments which may be different for patients even hav-
ing same diseases but different physiologic states, which achieves better results.
Furthermore, PPC learns a good representation of disease and discriminates dif-
ferent severities of multiple diseases of comorbidity patients well. In the future,
we will study how to solve the scalability issue for fuller set of medications.
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