
Learning to Detect Pathogenic Microorganism of
Community-acquired Pneumonia

Wenwei Liang
East China Normal University
51174500033@stu.ecnu.edu.cn

Wei Zhang∗
East China Normal University
zhangwei.thu2011@gmail.com

Bo Jin
East China Normal University

824976094@qq.com

Jiangjiang Xu
Shanghai Children’s Hospital

13621919395@163.com

Linhua Shu
Shanghai Children’s Hospital

shulinhua@126.com

Hongyuan Zha
Georgia Institute of Technology

zha@cc.gatech.edu

ABSTRACT

Community-acquired pneumonia (CAP) is a major death cause for
children, requiring an early administration of appropriate antibi-
otics to cure it. To achieve this, accurate detection of pathogenic
microorganism is crucial, especially for reducing the abuse of an-
tibiotics. Conventional gold standard detection methods are mainly
etiology based, incurring high cost and labor intensity. Although
recently electronic health records (EHRs) become prevalent and
widely used, their power for automatically determining pathogenic
microorganism has not been investigated. In this paper, we formu-
late a new problem for automatically detecting pathogenic microor-
ganism of CAP by considering patient biomedical features from
EHRs, including time-varying body temperatures and common labo-
ratory measurements. We further develop a Patient Attention based
Recurrent Neural Network (PA-RNN) model to fuse different patient
features for detection. We conduct experiments on a real dataset,
demonstrating utilizing electronic health records yields promising
performance and PA-RNN outperforms several alternatives.
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1 INTRODUCTION

Community-acquired pneumonia (CAP) [13] refers to the lungs of
patients infected when they are not in hospital. It has long been
a major cause of morbidity and death, especially for children. As
reported by the studies [12, 15], pneumonia is one of the top ranked
diseases responsible for the deaths of children both in USA and
China. Curing CAP largely requires an early administration of
appropriate antibiotics [9]. Unfortunately, the issue of the abuse
of antibiotics is very prevalent, especially in developing countries
such as China [7], which seriously endangers human health.

Alleviating the above issue needs an accurate detection of pathog-
enic microorganism [13]. Pathogenic microorganism is a family of
microorganisms which will cause human diseases. If the pathogenic
microorganism of CAP can be precisely identified, clinicians are
able to prescribe optimal antibiotics. Conventional gold-standard
detection methods are mainly etiology based, including culture-
based assays, polymerase-chain-reaction (PCR), etc. However, many
of them need specialized equipment and reagents, and are labor and
time intensive [4, 17], which limit their application only in major
hospitals. Thus, there is an urgent need to develop intelligent and
cost-effective methodologies to detect pathogenic microorganism
of CAP using data which is easier to be acquired.

Recent progress in wide collection of electronic health records
(EHRs) [8] applies the methodologies from artificial intelligence
community to CAP. However, existing studies in this regard are
somewhat limited and mainly aim at 1) predicting whether sus-
pected patients have pneumonia [16] or 2) further judging the risk
of patients with pneumonia [3]. Most of them have ignored to in-
vestigate the power of patient easy-to-acquire data from EHRs for
automatically detecting pathogenic microorganism of CAP. In fact,
it plays a great role in treating CAP children. In this paper, we
formulate a new problem of utilizing pneumonia patients’ multiple
medical features from EHRs to identify their pathogenic microor-
ganisms. To our best knowledge, none of previous studies has in-
vestigated this problem. The studied features include time-varying
body temperature and some carefully selected clinical measure-
ments which are easy to be acquired, such as white blood cell count
from routine blood test (see Table 1 for details). Consequently, the
central challenge is how to effectively fuse the above multiple types
of features and construct an effective model for the problem.

To address the challenge, we develop a Patient Attention based
Recurrent Neural Network (PA-RNN), which is capable of mod-
eling sequential body temperatures and fusing multiple types of
patient features. To be specific, PA-RNN first exploits the power
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of recurrent neural network (RNN) to obtain a sequence of body
temperature representations for different time steps. Meantime it
constructs patient basic features which are carefully selected from
EHRs. Afterwards, inspired by attention mechanism [1], PA-RNN
provides a patient feature based attention to determine the impor-
tance of each time-varying temperature representation and further
gains an integrated representation for a whole body temperature
sequence. Finally, the model fuses the integrated representation
with the representation of patient basic features for pathogenic
microorganism detection.

In a nutshell, the major novelty of PA-RNN is that most previous
studies which utilize RNN to model EHRs [2, 5, 10, 11, 14] focus on
predicting targets at the next time step based on current hidden
states of RNN. However, we obtain an integrated representation of
body temperatures sequence through a novel patient feature based
attention computation to all hidden states of RNN. We conduct
comprehensive experiments on a real world dataset from a major
hospital in China, indicating the benefit of fusing multiple types
of features from EHRs for the studied problem, and demonstrating
the effectiveness of PA-RNN over several alternative methods.

2 COMPUTATIONAL MODEL

2.1 Problem definition

Assume the CAP record set is denoted as R = {Rtr ,Rte }, where
Rtr is used for training and Rte for testing. Each record r ∈ R can
be expressed as, r = {u,Xu ,yu }, where u denotes the pneumonia
patient in the record, Xu represents the patient time-varying body
temperatures and other features from EHRs, and yu corresponds
to the class of pathogenic microorganism causing pneumonia (e.g.,
mycoplasmal pneumonia (MP), bacterial pneumonia (BP), and res-
piratory syncytial virus pneumonia (RSVP)). Based on the above
denotations, we formally define the problem as below,

Problem 1 (PathogenicMicroorganismDetection). Gi-
ven a training set Rtr of CAP, the target is to learn a model f : Xu →
yu for each record r ∈ Rtr , and further utilize the model to detect
pathogenic microorganism of target records in a test set Rte .

2.2 Patient features

We introduce the selected features from patients’ EHRs that could be
utilized as indicators for determining the pathogenicmicroorganism
of CAP. All the selected features shown in Table 1 are categorized
into three groups: 1) body temperatures, 2) clinical measurements,
and 3) demographics. Among them, the features in the latter two
groups are selected based on chi-square test and the advices from
clinicians. We do not provide the results of the test due to page
space limitation and it not being the major focus in this paper.
Body temperatures. Fever is a common comorbidity of CAP, lead-
ing to anomalous variation of body temperatures. We consider this
type of feature, hoping to reveal sequential characteristics and ben-
efit the detection of pathogenic microorganism. The time interval
between consecutive temperature measurements in our dataset is
about 2 hours. If not stated, we adopt patients’ body temperature
of the first two days in hospital, which ensures the time cost of
our detection method is less than the traditional detection methods
such as PCR.

Table 1: Summary of selected features.

Feature Description

Temp Time-varying body temperatures
Chest X-ray “1” denoting lobar and “0” for the rest
WBC White blood cell count
NE_per Neutrophil percentage
LYM_per Lymphocyte percentage
CRP C-reactive protein
ALT Alanine aminotransferase
AST Aspartate aminotransferase
ALB Albumin
Season “1” for summer and antumn and “0” for the rest
Age Patient age when admission

It is intuitive that the variation of body temperature in normal
range could be informative for the detection. Following the sug-
gestion from physicians, we adopt the min-max strategy to rescale
all values of time-varying body temperatures. The minimum tem-
perature is set to 37.2◦C while the maximum to 40.0◦C. Suppose
Vu ∈ R

m denotes the numerical sequence of body temperature
for patient u, Vu,t represents the value of t-th time step in the se-
quence, andm is the total count of time steps. Then we can define
the formula as follows:

Vu,t =




0 Vu,t < 37.2◦C
Vu,t−37.2◦C

40.0◦C−37.2◦C 37.2◦C ≤ Vu,t ≤ 40.0◦C
1 Vu,t > 40.0◦C .

(1)

Clinicalmeasurements. The selected medical features are mainly
infectious indicators to pathogenic microorganism. For example, we
find that CRP has a closer association with BP through chi-square
test. It is worth noting that we only consider the first measurements
of these features when designing PA-RNN for the following reasons.
First, these features are not repeatedly measured for some patients.
For example, the average of AST measurement for each patient
is 1.19 in our dataset. Second, the average intervals between two
consecutive measurements are usually more than 5 days and much
larger than those for body temperatures. If we want to consider
their sequential characteristics, the time cost of collecting those
data will be very high, which is against our purpose of detecting
pathogenic microorganism faster than etiology based methods.
Demographics:We adopt “Age” and “Season” to denote user de-
mographics. On the one hand, patients in different ages might be
infected by different types of pathogenic microorganism with dif-
ferent possibilities. For example, we find that pneumonia patients
in the age of 6 to 14 are more likely to be infected by MP. On the
other hand, pneumonia has seasonal characteristics. For example,
the proportion of patients with MP in summer and autumn is about
20% higher than those in the other two seasons.

For ease of later model specification, we regard the combination
of laboratory measurements and demographics as patient basic
features and denote their corresponding value vector as Su for
patient u in record r . Finally we can get Xu = {Vu , Su }.

2.3 Model specification

We take the record r mentioned above as an example to introduce
PA-RNN. The basic framework of the model is shown in Figure 1.
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Figure 1: The architecture of the proposed PA-RNN model.

Overall, it consists of two essential components: 1) the left part of
the figure presents a recurrent neural network for modeling time-
varying body temperatures, and 2) the right part indicates a feed-
forward neural network for modeling patient basic features. The
two components are correlated in PA-RNN through the following
two manners. First, PA-RNN utilizes the intermediate representa-
tion of patient basic features for attention calculation to obtain the
integrated representation of body temperatures. Second, it concate-
nates the integrated representation and the final representation of
patient basic features for pathogenic microorganism detection.
RNN for body temperatures: To model body temperatures, we
adopt long short-term memory (LSTM) network [6] due to its good
performance of modeling sequential data. It is capable of consider-
ing dependencies of temperatures between different time steps.

Given the input Vu,t at time step t , the previous hidden state
hu,t−1, and the cell state cu,t−1 of LSTM, we define the follow
equations to obtain the current hidden state hu,t ,



iu,t
fu,t
ou,t


=



σ
σ
σ


(Wi f o · [Vu,t ;hu,t−1] + bi f o ), (2)

cu,t = iu,t ⊙ tanh(Wc · [Vu,t ;hu,t−1] + bc ) + fu,t ⊙ cu,t−1, (3)
hu,t = ou,t ⊙ tanh(cu,t ), (4)

where iu,t , fu,t , and ou,t correspond to the activations of input
gate, forget gate and output gate, respectively. We use σ to de-
note the sigmoid function and ⊙ to represent Hardmard product.
Wi f o ,Wc ,bi f o , and bc are the learnable parameters of LSTM. After
recurrent computation for each time step, we can obtain the hidden
state sequence, {hu,1, . . . ,hu,m }.
Personalized attention computation: Before introducing the
attention computation for the above hidden state sequence, we
first define Sinteru and S

top
u to denote the intermediate and top

layers’ outputs of the feed-forward neural network, respectively.
Each layer of the network is associated with nonlinear activation
functions, such as rectified linear unit (ReLU).

It is intuitive that temperatures in different time steps have differ-
ent degrees of importance for representing the whole time-varying
sequence, which will be used to detect pathogenic microorganism.
We propose a novel attention computation to capture this intuition,
which utilizes the intermediate representation of patient basic fea-
tures to guide the computation of attention weights,

αu,t = softmax
(
Wa · tanh(Whhu,t +WsS

inter
u + ba )

)
, (5)

whereWa ,Wh ,Ws are weight matrices and ba is a bias vector. Based
on this, we can get the integrated representation Hu of body tem-
perature sequence, i.e., Hu =

∑m
t=1 αu,thu,t .

Learning to detection.After gettingHu and Stopu , we concatenate
them to form a joint representation for patient u in the record r .
With this representation, we could make the detection more accu-
rate. Suppose the target is expressed as ŷu , then we can calculate it
as follows:

ŷu = softmax(Wy · [Hu ; S
top
u ] + by ), (6)

whereWy , by are the learnable parameters. We minimize PA-RNN
by the cross entropy error between the real target y and the gener-
ated target ŷu by gradient based methods.

3 EXPERIMENTS

3.1 Dataset and evaluation metrics

We study the problem of pathogenic microorganism detection for
CAP using a real-world dataset from a Hospital in China, in which
patients are all children but with different ages. Due to privacy issue,
we anonymize all the patients. The EHRs were recorded from June
1st in 2014 to May 31st in 2015. The adopted patient features are
already shown in Table 1. To handle missing values in patient basic
features, we adopt the mean imputation strategy [10]. When the
length of a patient time-varying body temperature is less than the
pre-specified count of time stepsm (e.g., 24), we use 37.2◦C to pad
temperature sequences from back to front, occupying about 30%
of the dataset. It is reasonable because CAP patients are supposed
to leave hospital when they are back to health with normal body
temperature. In summary, we have 681 qualified records and each
record corresponds to a unique patient. As about 48% of patients
have MP, much larger than others like BP and RSVP (e.g., BP ac-
counts for about 23%), we regard whether CAP patients having MP
or not as the detection target.

Since the data size is not very large, we adopt 5-fold cross valida-
tion and report the average results. The evaluation metrics adopted
in the experiments are average accuracy (Avg ACC) and average
area under the curve (Avg AUC), which are commonly used in
classification tasks.

3.2 Implementation details

We implemented our model and the other comparisons with the
Keras library and Python. The Adam algorithm is adopted for train-
ing PA-RNN with a mini-batch size of 16 and the learning rate of
0.0005. L2 regularization is employed to alleviate the overfitting
issue. All the methods are trained with maximum of 200 training
epochs and the early stopping strategy is also considered. Without
specific statement, the number of the time stepm is set to 24 and the
hidden state of LSTM is set to 5. The units of intermediate and top
layers of feed-forward neural network are set to 24 and 16, respec-
tively. To ensure fair comparison, we report the best performance
for each method after tuning their hyper-parameters.

3.3 Comparison study

Comparison with alternatives. We choose the method of re-
garding the maximum class (MC) as the detection for its simplicity.
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Table 2: Evaluation results of only modeling temperatures.

Method Avg ACC Avg AUC

MC 0.5213 0.5000
LR 0.5536 0.5473
GBDT 0.5624 0.5596
LSTM 0.5800 0.6013

Moreover, two standard classification models, linear logistic regres-
sion (LR) and nonlinear gradient boosting decision tree (GBDT),
are adopted for comparison. To fuse the mentioned patient fea-
tures, we first concatenate the body temperature sequence with
other basic features and denote the corresponding methods with a
suffix “(Seq)”. As the large temperature feature dimension might
influence the performance of classifiers, we adopt the average body
temperature as the feature instead of using the whole sequence.
The corresponding methods are suffixed by “(Avg)”.

We first test the performance of all the adopted methods con-
sidering only body temperatures. Table 2 shows results of LSTM
and other compared methods. MC performs worst among all the
methods because it does not consider any patient feature. GBDT
outperforms LR, showing that nonlinear modeling for temperature
sequence is promising. LSTM performs best among all the methods,
which shows the its advantage for modeling sequential data and
supports our model choice.

Table 3 compares our approach with other alternatives on all
features. Our final model PA-RNN improves all the other models,
including the variant of our model, PA-RNN (w/o attention), which
does not use the attention computation. We can also see PA-RNN
(w/o attention) outperforms LR and GBDT significantly. All the
above phenomenons show that the improvements of PA-RNN are
not only from utilizing LSTM for modeling sequential temperatures,
but are also caused by the proposed effective attention computation.
More analysis. Due to space limitation, we only report that the
average accuracy of PA-RNN considering only patient basic features
is 0.7371, which shows that the integration of body temperature
and patient basic features is indeed beneficial.
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Figure 2: Results of different length of sequences.

We test how the results of PA-RNN differ with different length
of temperature sequences. Figure 2 shows that when they become
longer, the model achieves slightly better results. It is intuitive that
longer sequences could bring more information about patients.

4 CONCLUSION

In this paper, we present a new problem of pathogenic microor-
ganism detection for CAP patients by considering their features

Table 3: Evaluation results of modeling all features.

Method Avg ACC Avg AUC

MC 0.5213 0.5000
GBDT (Seq) 0.7224 0.7211
LR (Seq) 0.7239 0.7232
GBDT (Avg) 0.7254 0.7236
LR (Avg) 0.7342 0.7326

PA-RNN (w/o attention) 0.7423 0.7974
PA-RNN (ours) 0.7464 0.8079

including time-varying body temperature from EHRs. We propose
a deep learning model called PA-RNN with a novel attention com-
putation, to model sequential body temperatures and fuse multiple
types of features. Experimental results on a real world dataset prove
the effectiveness of the proposed PA-RNN for pathogenic microor-
ganism detection.
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