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Abstract
Popularity prediction of user generated textual con-
tent is critical for prioritizing information in the
web, which alleviates heavy information overload
for ordinary readers. Most previous studies model
each content instance separately for prediction and
thus overlook the sequential correlations between
instances of a specific user. In this paper, we
go deeper into this problem based on the two
observations for each user, i.e., sequential con-
tent correlation and sequential popularity correla-
tion. We propose a novel deep sequential model
called User Memory-augmented recurrent Atten-
tion Network (UMAN). This model encodes the
two correlations by updating external user memo-
ries which is further leveraged for target text rep-
resentation learning and popularity prediction. The
experimental results on several real-world datasets
validate the benefits of considering these correla-
tions and demonstrate UMAN achieves best perfor-
mance among several strong competitors.

1 Introduction
User generated textual content (UGTC) is one of the most
important types of user generated content (UGC) in the era
of Web 2.0, mainly consisting of unstructured text. As nat-
ural language has complex linguistic phenomena [Manning
and Schütze, 2001] and the use of words is mainly deter-
mined by the writers, UGTC could reflect thoughts and feel-
ings of individual human beings, making it more personal-
ized and unique from other types of UGC, such as image
and video. The concrete form of UGTC is social post and
it can find many specific examples in the real world, such as
Twitter and Sina Weibo where users post microblogs which
will be forwarded by interested users, Meetup and Douban
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Event where organizers post activities for others to partici-
pate, and Medium where authors post articles and others can
vote on them, etc. With the booming of social posts, the issue
of heavy information overload for ordinary users has arisen,
and it becomes even serious when the content aggregation and
distribution platforms occur, such as SmartNews and Toutiao.

In order to alleviate this issue, web hosts and content
providers usually follow two technical routes, i.e., personal-
ized recommendation and popularity-based display. While
the former one [Shi et al., 2014] has achieved great success
by delivering content to users based on their own preference,
it needs enough user historical data, which limits its applica-
tion, especially for cold-start users [Schein et al., 2002]. The
latter one ranks content by their popularity scores, defined to
measure the total interactions with users, and display them in
front pages. Since it could be applied to all users, it is more
general and widely used. During the past decade, studies for
popularity prediction have sprung up. An important research
direction in this regard is to predict the popularity score for
a newly emerging target (e.g., the future total retweet count
for a new tweet). It not only helps users find popular con-
tent ahead of time, but also supports marketing strategies and
content distribution mechanism [Figueiredo et al., 2011].

Limitations of existing studies. In the literature, [Cui
et al., 2011; Tsur and Rappoport, 2012; Zhao et al., 2015;
Martin et al., 2016] have explored to predict the popularity
of UGTC by mainly considering user and content informa-
tion from the perspectives of feature engineering and statisti-
cal models. Unfortunately, they model each social post sepa-
rately and ignore two general sequential correlations (see Fig-
ure 1(a) and 1(b)) between different social posts of a same
user. The first observed correlation is the sequential content
correlation meaning two posts with smaller position interval
in a sequence have larger text similarity. The second is the se-
quential popularity correlation denoting the change of a user’s
content popularity is smooth. Although the study of social
image popularity prediction [Wu et al., 2017a] takes a step
in sequential modeling for images, it only models a global
user-image sequence, without differentiating users.

Inspired by these two observed correlations, we de-
velop a novel deep sequential model named User Memory-
augmented recurrent Attention Network (UMAN). The main



idea of this model is to utilize a user’s recent posts and cor-
responding popularity scores to enable the user memory to
fuse both long-term characteristics and short-term tenden-
cies, which will be applied to model target text and gener-
ate popularity prediction. Specifically, UMAN first adopts
external user memories to produce attentive text embeddings
for their recent posts. After concatenating the learned em-
beddings with their corresponding popularity scores, UMAN
leverages recurrent neural network to generate integrated rep-
resentations which are in return used to update the user mem-
ories. Ultimately, UMAN exploits the updated user memories
to gain attentive text embeddings of target content and further
uses both the memories and text embeddings for popularity
generation. The attention mechanism [Bahdanau et al., 2014]
is plentifully applied in UMAN, with the intuition that good
text embeddings should reflect users’ characteristics and be
personalized.

Contribution. We summarize the main contributions of
this paper as follows:

• We identify the two sequential correlations in the prob-
lem of UGTC popularity prediction, i.e., sequential con-
tent correlation and sequential popularity correlation. To
our best knowledge, neither of the two correlations has
been explicitly modeled in the literature. In fact, en-
coding the two correlations can significantly improve the
popularity prediction.

• To effectively capture the two correlations, a novel deep
sequential model (UMAN) is devised. Specifically, our
model enables external user memory updating to fuse
both long-term characteristics and short-term tenden-
cies, which is further used for target text representation
learning and popularity prediction.

• We conduct comprehensive experiments on several
real-world datasets, demonstrating UMAN outperforms
strong competitors, validating the benefits of its main
components, and providing qualitative analysis for case
studies. We make the dataset1 publicly available for fur-
ther relevant research.

2 Preliminaries
2.1 Problem Definition
Before we go into the details of the problem and method,
we first provide some necessary mathematical notations used
later. Throughout this paper, we use bold upper case letters
to denote matrices and bold lower case letters to represent
vectors. Without specification, non-bold letters mean scalars.
In addition, we utilize W·,j to denote the j-th column of the
matrix W and it is similar for other symbols.

With regard to various types of UGTC in different social
medias, the two most fundamental and important elements
are user and textual content which are the focus of this work.
Let U = {u1, . . . , uN} denote a set of users. For each user
un ∈ U , assume Pn,T = {Sn,1, . . . , Sn,t, . . . , Sn,cn,T

} in-
cludes all the posts the user posted before time T , where cn,T
is the corresponding count of posts. Each post should have

1https://github.com/Autumn945/UMAN data
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Figure 1: Quantification of the two correlations on three datasets.

a corresponding popularity score, e.g., yn,t for Sn,t. Thus
we define Yn,T analogous to Pn,T . Moreover, the text Sn,t

denotes a sequence of words as {wn,t
1 , . . . , wn,t

i , . . . , wn,t
vn,t
},

where wn,t
i ∈ V and vn,t is the number of words in Sn,t.

Based on the above notations, we formally state the prob-
lem as follows:

Problem 1 (Popularity Prediction of UGTC) Given the
past social posts P·,T of users in U before time T and their
corresponding popularity scores Y·,T , the target is to learn
an optimal popularity predictor that can predict the future
popularity scores of users’ newly posted UGTC.

2.2 Observed Correlations
As aforementioned, we have two key observations about se-
quential correlations for each user. In this part, we quantify
these two observations by performing data analysis on the
datasets we used in the experiments and illustrated in Sec-
tion 4. We first clarify the observed correlations and then
provide quantitative analysis one after another.

Observation 1 Sequential content correlation: the content
similarity of two posts from a same user negatively correlates
with the size of their position interval.

To verify this, we start with a simple vector space model
with each dimension being a tf-idf weight to calculate the
cosine similarity of two posts. For each position interval
∆t ∈ Z+, we assume the similarity between the t-th and
(t+ ∆t)-th posts of user un is Dn

t,t+∆t. Then we define Π1
∆t

to be the average content similarity over all users, which is
given by:

Π1
∆t =

∑N
n=1

∑cn,T−∆t
t=1 Dn

t,t+∆t

Ω1
∆t

, (1)

where Ω1
∆t is the number of the summation terms.

We analyze the numerical variation with the increase of ∆t
and report the results in Figure 1(a). It can be easily observed
that the average content similarities become smaller when ∆t
gets larger on all the three datasets. Particularly, an interesting
phenomenon is that the similarities vary dramatically first and
then the variation trends become relatively stable. Therefore,
sequential content correlation indeed widely exists in UGTC.
As a result, users’ recent posts might be more likely related to
current posts in some topics and thus it is intuitive to regard
the recent posts as contextual information to complement the
current posts. This might be even more beneficial when the
length of a post is short.



Observation 2 Sequential popularity correlation: the nu-
merical difference of popularity scores between two posts
from a same user positively correlates with the size of their
position interval.

Similar to the above procedures, we define the average
popularity difference Π2

∆t over all users for the interval ∆t
as follows:

Π2
∆t =

∑N
n=1

∑cn,T−∆t
t=1 |yn,t+∆t − yn,t|

Ω2
∆t

, (2)

where Ω2
∆t corresponds to the number of summation terms in

the above equation.
As Figure 1(b) shows, the average popularity differences

increase with the growth of interval ∆t. The variation trends
of popularity difference are similar to those of content simi-
larity, changing rapidly for the first several small ∆t. These
phenomena might reflect that for a specific user, the popular-
ity of a target text is partially determined by its recent past
posts’ popularity.

Based on the above analysis, our model is designed to in-
corporate users’ recent posts and their corresponding popu-
larity to effectively explore the two correlations. Note our
model also allows for more fined-grained treatment such as
by further considering the correlation from the perspective of
time gaps or topic categories, which we leave for future work.

3 Model
We present the overall framework of UMAN in Figure 2. It
consists of two main components corresponding to the two
panels. The left involves user memory updating mechanism,
aiming at encoding the mentioned two correlations by updat-
ing user memories (see Section 3.2). The right is attention-
based popularity prediction which leverages the updated user
memories to generate the popularity scores for the targets (see
Section 3.3).

For ease of model clarification, we take the user un as
an example. Assume we consider the user’s recent M posts
and aim to predict the popularity yn,t of Sn,t, then we have
{Sn,t−m}m=M

m=1 and {yn,t−m}m=M
m=1 as additional inputs. We

start with the illustration of the input representations below.

3.1 Input Representation
Text representation. We represent the original one-
hot vectors of words in the post Sn,t−m as Xn,t−m =
[x1, . . . ,xvn,t−m

]. Through a commonly used lookup table
operation, they are mapped to dense embeddings En,t−m =
[e1, . . . , evn,t−m

], each of which is supposed to be a k-
dimensional vector. Inspired by the idea of convolutional
neural network (CNN) model for texts [Kim, 2014], we ap-
ply 1-D convolution with filter sizes (h) of 1 (unigram), 2
(bigram), and 3 (trigram) to each word embedding, which is
defined as follows:

ehi = Wh
Fei:i+h−1 + bh

F , (3)

where ei:i+h−1 is the concatenation of the word embed-
dings ei, . . . , ei+h−1, and ei:i+h−1 ∈ Rhk with hk being
the product of h and k. Without loss of generality, we let

Concat Concat Concat

Attention Attention Attention

UpdateLSTM

S(t-3) S(t-2) S(t-1) Usery(t-3) y(t-2) y(t-1)

S(t)
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y(t)
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Figure 2: The architecture of the proposed UMAN. Note: take 3
recent posts and popularity scores as examples for presentation.

Wh
F ∈ Rk×hk and bh

F ∈ Rk to keep the dimensions of ehi
and ei being the same.

Different from [Kim, 2014] that adopts max pooling opera-
tion along the word dimension to get an integrated representa-
tion for each text, we apply max pooling along the dimension
of filter size h, e.g., ėi,j = max{e1

i,j , e
2
i,j , e

3
i,j}, to get the up-

dated embeddings Ėn,t−m = [ė1, . . . , ėvn,t−m ] for the post.
Compared with the original word embeddings, we could cap-
ture context word information (e.g, phrase-level knowledge)
and improve expressive capacity, of which the benefit is veri-
fied in later experiments.
User memory and popularity representation. We intro-
duce a user memory vn for the user un with the follow-
ing intuition. User memory stores a global user state which
could represent its long-term characteristics and the memory
could be further updated by a user’s recent UGTC to cap-
ture its short-term tendencies. The idea is consistent in spirit
of the recently proposed memory mechanism [Sukhbaatar et
al., 2015; Graves et al., 2016] and has successful applications
such as question answering [Xiong et al., 2016]. In addi-
tion, we simply take the rescaled popularity scores as popu-
larity representation since the original scores are scalars and
already continuous values.

3.2 User Memory Updating Mechanism
To encode the two sequential correlations, we utilize users’
recent posts and their corresponding popularity scores to up-
date user memory. Achieving this involves two main pro-
cedures, i.e., user-aware attentive representation learning for
each of the posts and recurrent modeling for all the posts and
popularity scores.
User-aware attentive representation learning. We first em-
ploy user memory to learn user-aware text representation. It
reflects a user’s different attentions to each word embedding,
indicating personalized word importance.

More specifically, we define a simple score function
f(vn, ėi) to measure the importance of word wi as follows:

f(vn, ėi) = v>n ėi. (4)

This calculation is commonly employed by latent factor mod-
els in recommender system [Shi et al., 2014] to weigh the rel-
evance between user and item. Based on this, we provide the
formulas to calculate the attention weight αn,i and user-aware



text representation ēn,t−m, which are given by:

αn,i =
exp

(
f(vn, ėi)

)
∑vn,t−m

i′=1 exp
(
f(vn, ėi′)

) , (5)

ēn,t−m =

vn,t−m∑
i=1

αn,iėi. (6)

After getting {ēn,t−m}m=M
m=1 through the above equations,

we concatenate them with popularity representation, i.e.,
{[ēn,t−m; yn,t−m]}m=M

m=1 which will be fed into the pro-
cedure of recurrent modeling. For simplicity, we denote
[ēn,t−m; yn,t−m] as qn,t−m.
Recurrent modeling. We employ long-short term memory
(LSTM) [Hochreiter and Schmidhuber, 1997] to recurrently
model the sequence of {qn,t′−M+m}m=M

m=1 where t′ = t− 1.
It can flexibly choose to forget past sequential information
and remember current input representation. The hidden state
of the m-th position is hm which is given by:

hm = LSTM(qn,t′−M+m,hm−1). (7)
After recursive updating, our UMAN learns the final embed-
ding hM for the user post sequence, which is used to update
the user memory through the following way:

v̇n = hM + vn. (8)
Consequently, the updated user memory accumulates user
long-term state and short-term preference.

3.3 Attention-based Popularity Prediction
Considering the target text Sn,t for prediction, we use
the convolutional neural network based approach (see
Section 3.1) to obtain the word embeddings Ėn,t =
[ė1, . . . , ėvn,t

]. Afterwards, the updated user memory v̇n is
employed to get the text embedding ēn,t through the way
shown in Equation 5 and 6.

UMAN adopts a short connection to connect the updated
user memory to popularity generation, which could ensure
direct information flow between users’ past popularity scores
and the target popularity. Specifically, we concatenate the
user memory and text embedding to obtain [v̇n; ēn,t]. We
feed it into a fully connected layer with the parameter vec-
tor wFC and bias bFC to generate popularity prediction ŷn,t,
which is given by:

ŷn,t = wFC [v̇n; ēn,t] + bFC . (9)
We train UMAN in an end-to-end fashion by minimiz-

ing the mean squared error, for example, (yn,t − ŷn,t)
2.

We generate training sequences for each user by a slid-
ing window approach. Take the user un as an example
again. The corresponding training sequences are from
([Sn,1, . . . , Sn,M ], [yn,1, . . . , yn,M ], un, Sn,M+1, yn,M+1) to
([Sn,cn,T−M , . . . , Sn,cn,T−1], [yn,cn,T−M , . . . , yn,cn,T−1], un,
Sn,cn,T

, yn,cn,T
).

4 Experiments
The experiments focus on answering the important research
questions below:
Q1. How does UMAN compare with the adopted baselines?
Q2. Are the main components of UMAN effective?

Data D-Beijing D-Shanghai Twitter
#Users 883 1,109 8,727
#Words 85,847 104,225 38,647
#Train 27,582 35,895 223,232

#Validation 4,108 5,352 10,100
#Test 8,216 10,706 90,942

Table 1: Basic statistics of the datasets.

4.1 Experimental Setup
Datasets. We conduct experiments on three real-world
datasets from two domains with different languages to ensure
the generality of the proposed model. The first domain is
Douban Event2 (mostly written in Chinese), a large and pop-
ular website in China where users post activities for ordinary
users to register online to attend. We use the datasets [Zhang
and Wang, 2015; Yin et al., 2016], aiming to predict the ul-
timate number of participants for each target activity. As all
activities are offline and divided by cities, we choose the ac-
tivities held in Beijing and Shanghai to create two datasets
named D-Beijing and D-Shanghai. The second is Twitter
(we only keep tweets written in English), where users pub-
lish tweets and other users interested can retweet them. We
sample a dataset from the Twitter streaming archive3, mainly
consisting of the original tweets written in May of 2016.

To evaluate our model and make comparisons with other
methods, we first perform text preprocessing for the three
datasets, including segmenting words for Chinese text, con-
verting all English words to lowercases, removing most punc-
tuations, and filtering sparse words (occurring less than 5
times on the datasets). Moreover, we select users with at least
10 posts to ensure having enough sequential posts. We split
the datasets in chronological order for each user. The train-
ing sets occupy about 70% in total and the validation sets are
randomly sampled from the left datasets. The basic statistics
of the experimental datasets are shown in Table 1.
Baselines. Since there are few well-designed sequential mod-
eling approaches for the sequential popularity prediction of
UGTC, we choose or construct comparison models based on
the most related research fields.
- HF-NMF [Cui et al., 2011]: It is an early non-sequential

model for user post popularity prediction, without captur-
ing influence from user sequential posts. We consider a
simpler version without modeling social relations.

- FeaReg: Regression based methods are leveraged for mod-
eling hand-crafted features such as tf-idf of text, similar
to [Martin et al., 2016]. We select ridge regression model
for its good performance and regard all users’ recent posts
as features for sequential modeling.

- DTCN-T: Following the deep temporal context network
(DTCN) for sequential image popularity prediction [Wu et
al., 2017a], we build a similar model for textual popular-
ity prediction, denoted as DTCN-T. It constructs a global
user-post sequence for the studied problem, without distin-
guishing posts for different users.

- SRNN-P: Inspired the session-based recurrent neural net-
works (SRNN) [Hidasi et al., 2016] for recommendation,

2https://beijing.douban.com/events/week-all
3https://archive.org/search.php?query=twitter-stream



we adopt LSTM to model post sequences of different users.
To gain post embedding, we test several methods such as
LSTM and mean pooling, and select the one with better
performance. We name SRNN for popularity prediction as
SRNN-P.

- ATEM-P: The attention-based transaction embedding
model (ATEM) [Wang et al., 2018a] is recently proposed
for the scenario of the next item recommendation, which
can be adapted to our problem setting by regarding users’
recent posts as contextual items. We denote ATEM for
popularity prediction as ATEM-P.

To ensure fair comparisons, we make DTCN-T, SRNN-P,
and ATEM-P learn textual embeddings by the same convolu-
tional neural network used in UMAN , which is later demon-
strated to achieve comparable performance with LSTM but
be much more efficient. Moreover, when taking both user
posts and their popularity scores as input, the above baselines
except HF-NMF concatenate post embeddings and popularity
scores like UMAN as well.
Evaluation protocols. We choose mean squared error (MSE)
and mean absolute error (MAE), which are the two standard
evaluation metrics for popularity prediction [Li et al., 2017;
Wu et al., 2017a]. We compare UMAN with other sequential
modeling approaches using a sliding window strategy on the
test sets, just like the way mentioned in Section 3.3. However,
we compare UMAN and HF-NMF by only evaluating on the
first record of each user on the test sets since HF-NMF is a
non-sequential modeling approach.

To suppress large variations of popularity, we use yn,t =
log(

rn,t

dn,t
+ 1) [Wu et al., 2017a] to denote the rescaled num-

ber of retweets in Twitter and yn,t = log(pn,t + 1) [Li et
al., 2017] to represent the rescaled number of participants in
Douban Event, where dn,t means the number of days since
the tweet was posted, and rn,t and pn,t correspond to the orig-
inal counts of retweets and participants, respectively. The rea-
son to penalize old tweets with dn,t but not activities is that
each offline activity has a starting time and when the time
passes, the ultimate number of participants is deterministic.
However, tweets can be actually retweeted at any time.
Implementation details. We determine the hyperparameters
of the adopted models on the validation datasets, and keep
them fixed during comparison. The dimension of every hid-
den vector––including user memory, word embedding, states
of RNN, factors in HF-NMF ––is set to 128. The length of
users’ recent post sequences is set to 4 by default. We train all
the deep learning based models by Adam with a learning rate
0.001, a minibatch size 64, and exponential decay rates 0.9
and 0.999. In addition, early stopping is adopted to terminate
the training process based on the performance on validation
datasets.

4.2 Model Comparison (Q1)
We first test the performance of UMAN and HF-NMF in a
non-sequential test setting. We let UMAN do not consider
users’ recent popularity scores here, in accordance with HF-
NMF. Table 2 shows UMAN largely outperforms HF-NMF
on all the three datasets, indicating the advantage of sequen-
tial modeling, which will be further demonstrated.

Models D-Beijing D-Shanghai Twitter
MSE MAE MSE MAE MSE MAE

HF-NMF 1.1949 0.7987 0.9319 0.7209 0.7014 0.6256
UMAN 0.9411 0.7196 0.8569 0.6884 0.6444 0.5584
Table 2: Evaluation on each user’s first record on the test sets.

Table 3 compares our model with the other sequential ap-
proaches in two settings, i.e, whether using popularity scores
of users’ recent posts or not. By first comparing the results
belonging to setting one and those in setting two, it shows all
the latter results are significantly better and more stable, in-
dicating the recent popularity scores are indeed beneficial for
the studied problem and more easily to be modeled.

Models D-Beijing D-Shanghai Twitter
MSE MAE MSE MAE MSE MAE

Only using users’ recent posts
FeaReg 0.9324 0.7253 0.9851 0.7477 1.1351 0.8025

DTCN-T 0.9376 0.7202 1.0347 0.7792 0.9629 0.7230
SRNN-P 1.0181 0.7644 1.0509 0.7799 1.4359 0.9218
ATEM-P 0.9872 0.7352 1.0451 0.7716 0.9914 0.7326
UMAN 0.8806 0.6902 0.9467 0.7305 0.9310 0.7066
Using both users’ recent posts and corresponding popularity scores
FeaReg 0.8131 0.6699 0.8379 0.6845 0.9316 0.7231

DTCN-T 0.9169 0.7047 0.9931 0.7517 0.9131 0.7113
SRNN-P 0.7413 0.6294 0.7610 0.6433 0.7750 0.6443
ATEM-P 0.8138 0.6547 0.8099 0.6625 0.7734 0.6382
UMAN 0.7197 0.6190 0.7371 0.6345 0.7583 0.6342

Table 3: Comparisons on the whole datasets.

By comparing UMAN with FeaReg, we find that the per-
formance differences are much larger in Twitter. This may
be explained the fact that tweets are short and contain more
spelling mistakes [Sriram et al., 2010], it is not easy for the
manually defined features such as TF-IDF to handle them.
The better results of UMAN than those of DTCN-T reveal
that considering all user-post pairs as a whole sequence is
not as good as differentiating sequences for different users.
We further compare UMAN with two recent deep sequential
modeling approaches developed for recommendation. The
better performance shows that our model is indeed suitable
for the sequential popularity problem. To sum up, our model
UMAN achieves the best results on both settings, which an-
swers the question Q1.

4.3 Model Analysis of UMAN (Q2)
Ablation study. To validate the effectiveness of main com-
ponents in UMAN, we conduct ablation experiments, using
“w/o seq” to denote not modeling sequences of users’ recent
posts and popularity scores, and using “w/o mem” to mean
not incorporating user memory into UMAN. Table 4 shows
that the part of sequential modeling plays a major role in ob-
taining good performance and the incorporation of user mem-
ory can further improve the results significantly.

We then show the contributions of the two sequential corre-
lations in UMAN by comparing the results of “w/o seq” from

Models D-Beijing D-Shanghai Twitter
UMAN (w/o seq) 0.8931 0.9635 0.9593
UMAN (w/o mem) 0.7421 0.7448 0.7727
UMAN 0.7197 0.7371 0.7583

Table 4: Ablation study of UMAN. Note: MSE is used.



Table 4 and UMAN (only users’ recent posts) and UMAN
from Table 3 in an incremental manner. We can see that
considering the content correlation is indeed useful for gain-
ing better results than not considering this, and additionally
incorporating popularity correlation can largely improve the
performance.
Influence of sequence length. We visualize the performance
variations with the increase of the modeled sequence length in
Figure 3. SRNN-P is adopted as a comparison for its second
best performance when modeling both recent posts and pop-
ularity scores. As expected, the performance becomes bet-
ter with larger sequence length, and the variation trends turn
to be stable. Regardless of the sequence length, our model
UMAN outperforms SRNN-P consistently.
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Figure 3: Results for different lengths of post sequences.

We also test UMAN considering corresponding users’ all
past posts. The results are 0.7219, 0.7284, and 0.7342 on
the three datasets, show that considering all posts does not
improve the performance much or even degrades the perfor-
mance. Moreover, the computational cost is much heavier
than only considering recent 4 posts.
Effectiveness of CNN for text modeling. Table 5 presents
the results of CNN and other two alternatives for text mod-
eling. “w/o cnn” means directly feeding original word em-
beddings to user-aware attentive representation learning and
the corresponding results are not so good, especially on the
Douban Event datasets. The performance of CNN is compa-
rable with LSTM, but the efficiency of CNN is much better
(e.g., 5-10 times faster in Twitter). Besides, there is a smaller
performance gap in Twitter, reflecting the hardness of model-
ing tweets due to their noise and shortness.

Models D-Beijing D-Shanghai Twitter
UMAN (w/o cnn) 0.7602 0.7670 0.7638
UMAN (lstm) 0.7233 0.7322 0.7613
UMAN 0.7197 0.7371 0.7583

Table 5: Performance of word embedding. Note: MSE is used.

4.4 Qualitative Analysis
We visualize the attentions of UMAN and UMAN (w/o seq)
to the examples in Figure 4, where each value is the product
of the attention weight and the text length. This operation
makes the mean attention value to be 1, regardless of what
the text length is. Thus we can easily compare the attention
weights of texts with different lengths.

From a whole perspective, these attention maps show that
our model more attends to head words than UMAN (w/o seq).
Taking the second as an example, UMAN is able to attend the
words “Sachs” and “father”, while UMAN (w/o seq) gives
more attentions to “Beijing station” which is not a distin-
guishable word on the D-Beijing dataset.

蔡依林-Jolin Tsai(1.65) 上海演唱会-Shanghai concert(1.54) 将-will(1.03) 于-be(0.82)
5(0.64) 月-May(0.65) 12(0.66) 日-twelfth(0.88) 在-at(0.96) 上海-Shanghai(1.42)
梅赛德斯-Mercedes(1.63) 奔驰-Benz(1.73) 文化中心-Arena(1.28) 举行-Hold(1.14) 

蔡依林-Jolin Tsai(1.20) 上海演唱会-Shanghai concert(1.33) 将-will(1.31) 于-be(1.13)
5(0.91) 月-May(0.93) 12(0.91) 日-twelfth(0.95) 在-at(0.97) 上海-Shanghai(1.10)
梅赛德斯-Mercedes(1.21) 奔驰-Benz(1.58) 文化中心-Arena(1.24) 举行-Hold(1.05)

萨克斯-Sachs(2.36) 之-of(0.99) 父-father(1.27) Kenny(1.10) G(0.89) 中国-China(0.92)
巡演-tour(1.34) 北京站-Beijing station(1.09) 

萨克斯-Sachs(0.81) 之-of(0.83) 父-father(0.84) Kenny(0.88) G(0.85) 中国-China(1.10)
巡演-tour(1.34) 北京站-Beijing station(1.23)

@mileycyrus(0.63) @fallontonight(0.63) your(0.74) hair(1.15) is(0.93) so(0.92) cute(1.99)

@mileycyrus(1.04) @fallontonight(1.19) your(1.07) hair(0.98) is(0.94) so(0.93) cute(0.86)

Ours

w/o Seq

Ours

w/o Seq

Ours

w/o Seq

D-Shanghai

D-Beijing

Twitter

Figure 4: Case study for attention visualization.

5 Related Work
Popularity prediction. It has attracted a lot of attention over
the last decade and studied online video [Pinto et al., 2013],
offline activity [Wang et al., 2018b], Wikipedia link [Dim-
itrov et al., 2017], social text [Cui et al., 2011], academic pa-
per [Xiao et al., 2016], multi-modal social image [Zhang et
al., 2018], and etc. The relevant studies can be roughly cate-
gorized into two groups: 1) static popularity prediction [Cui
et al., 2011; Dimitrov et al., 2017; Zhang et al., 2018; Wang
et al., 2018b] can predict target popularity just when it oc-
curs; and 2) dynamic popularity prediction [Pinto et al., 2013;
Xiao et al., 2016] requires a target’s early popularity pattern
and some studies [Cao et al., 2017] could even bridge the gap
between modeling dynamic diffusion and predicting popular-
ity [Shulman et al., 2016].

However, most related studies have not investigated se-
quential correlation between different targets. The most rele-
vant one is [Wu et al., 2017a] for predicting image popularity,
yet it only constructs a global sequence consisting of images
from different users. In contrast, we construct a textual post
sequence for each user and have verified the benefit of the
sequential modeling in our experiments. Noting that the fo-
cus of this paper is to apply the two sequential correlations to
static popularity prediction setting. But since the sequential
correlations work well for predicting targets’ final popularity,
it is promising to utilize the popularity dynamics of users’ re-
cent posts for inferring the targets’ dynamics, which could be
an interesting direction for further study.
Deep sequential modeling for recommendation. It is a re-
lated direction from the field of recommender system, aim-
ing at mining knowledge from users’ recently interacted item
sequences for future item recommendation. [Hidasi et al.,
2016] first utilized RNN to model the sequential relations be-
tween items occurring in a user session and further recom-
mend items which will be chosen in the same session. [Wu
et al., 2017b] proposed a coupled recurrent neural network
model by supposing not only users having sequences com-
posed by items but also items having user-based sequences.
[Quadrana et al., 2017] further developed a hierarchical RNN
which can model multiple sessions for each user. Recently,
[Wang et al., 2018a] presented an attention based model, giv-
ing different importance weights to users’ recently interacted
items for the next item recommendation. To achieve more
comprehensive comparison, we choose some representative
sequential modeling approaches as baselines, which could be
easily adapted to our problem setting without major modifi-



cation of their model architectures.

6 Conclusion
In this paper, we have studied the problem of user gener-
ated textual content popularity prediction. Inspired by the
two key observations about the sequential content correlation
and sequential popularity correlation, we have developed a
novel deep sequential model named UMAN to encode these
two correlations by updating the external user memories with
the users’ recent textual posts and corresponding popularity
scores. We conduct comprehensive experiments on several
real-world datasets, demonstrating UMAN is effective for the
problem and verifying the main components of UMAN are
beneficial for improving the performance.
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