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Abstract—What is happening around the world? When and
where? Mining the geo-tagged Twitter stream makes it possible
to answer the above questions in real-time. Although a single
tweet can be short and noisy, proper aggregations of tweets can
provide meaningful results. In this paper, we focus on hierarchical
spatio-temporal hashtag clustering techniques. Our system has
the following features: (1) Exploring events (hashtag clusters)
with different space granularity. Users can zoom in and out
on maps to find out what is happening in a particular area.
(2) Exploring events with different time granularity. Users can
choose to see what is happening today or in the past week.
(3) Efficient single-pass algorithm for event identification, which
provides human-readable hashtag clusters. (4) Efficient event
ranking which aims to find burst events and localized events
given a particular region and time frame. To support aggregation
with different space and time granularity, we propose a data
structure called STREAMCUBE, which is an extension of the
data cube structure from the database community with spatial
and temporal hierarchy. To achieve high scalability, we propose
a divide-and-conquer method to construct the STREAMCUBE.
To support flexible event ranking with different weights, we
proposed a top-k based index. Different efficient methods are
used to speed up event similarity computations. Finally, we
have conducted extensive experiments on a real twitter data.
Experimental results show that our framework can provide
meaningful results with high scalability.

I. INTRODUCTION

With 500 million tweets (messages) posted everyday, Twit-
ter has become one of the leading social media services around
the world. In Twitter, users can post short tweets, which are
limited to 140 characters, to share ‘what is happening’ with
their followers. Meanwhile, interesting tweets can be retweeted
(re-posted) to propagate further in the social network.

The tweet stream can be considered as an up-to-date news
sources of the physical world. For example, during the United
States presidential election of 2012, the Twitter Political Index
was used to measure users’ sentiments towards the candidates.
By treating Twitter users as human sensors, [1] can detect
earthquakes in real-time by monitoring earthquake related
tweets. Furthermore, it is shown that the up and down changes
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Fig. 1. Zoomable Event Cube

in stock market are correlated with users’ moods in Twitter [2].
Different from plain text, tweets contain rich attributes,

such as: (1) Geographical Information. Thanks to GPS-enabled
smart phones, more and more tweets are not only timestamped
but also geotagged. Also, it is common to find location
information in user profiles. (2) Hashtags. A hashtag is a word
or phrase preceded by ‘#’, and is used to identify messages on
a specific topic. For example, ‘#Election2012’ can be used
to indicate the topic of the United States presidential election
of 2012.

In this paper, we propose a novel framework for hierarchical
spatio-temporal hashtag clustering over the Twitter stream,
which aims to help users explore the Twitter data interactively.
An event is considered as a hashtag cluster. For example,
the United States presidential election of 2012 can be rep-
resented by hashtag cluster {‘#Election2012’, ‘#Obama’,
‘#Romney’}, where ‘#Obama’ and ‘#Romney’ represent
two main candidates in the campaign respectively. As shown
in Figure 1, we organize hashtag clusters into data cubes
according to their timestamps and geographical information.
Different from traditional data cubes from database literature
[3], our framework constructs data cubes from tweet stream
in real-time. Thus our framework is called STREAMCUBE.
STREAMCUBE has the following features:
• Exploring events in different time granularity. Depending

on the data analysis purpose, different users may have
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different requirements on the time granularity. If we want
to summarize the top-10 events of a year, we may choose
year as the basic time granularity. In this case, the recency
of an event is not very important. However, if we want to
detect emerging events from the stream, we may choose
a finer granularity.

• Exploring events in different space granularity. If we
focus on the world-wide breaking events, we may choose
global space as our basic space granularity. If we focus
on localized news, we may choose district or city as our
space granularity.

• Detecting burst events and localized events. Given a
time frame (e.g., today), users may want to know what
events break out during that time. Given a region (e.g.,
the current region shown on the Google map), users
may want to know the local events with respect to this
particular region. Finally, given a time frame and a region,
we can also find the burst localized events.

Hierarchical spatio-temporal hashtag clustering over the
Twitter stream faces many challenges:

• Efficient single-pass hashtag clustering. In order to pro-
vide real-time event exploration, the clustering algorithm
should avoid iterative computation. The clustering results
should be updated in an incremental way. Traditional
clustering models assume data points are static. How-
ever, the content of hashtags are evolving and similar
hashtags may become dissimilar as new tweets come in.
For example, hashtag ‘#Obama’ is closely related to
‘#Election2012’ during the election but will be related
to other hashtags as time goes by.

• Efficient ranking algorithm with a clear semantic defini-
tion on burstiness and localness in the context of the data
cube. There are thousands of events happening every hour
from different places. However, given a particular time
frame (e.g., today) and a region the user is interested
in, events that occurred in the given time frame from
the chosen region are more valuable than others. Finding
burst localized events has not been well studied before.

• Merging new data with historical data incrementally.
Suppose we already have identified events for each day
of the week. To get a whole picture of the events in the
week, we need to make sure that the results of each day
can be merged incrementally with little cost. In this way
we can avoid computing from the the whole week’s data.

STREAMCUBE consists of three components: (1) Spatial-
temporal aggregation (Section III), which organizes tweets
according to the spatial and temporal hierarchy. The hierarchy
enables users to explore hashtag clusters in different time
and space granularity. Moreover, clustering results can be
merged incrementally according to the defined hierarchy. (2)
A Single-pass hashtag clustering algorithm (Section IV). The
algorithm is designed to handle content-evolving hashtags and
provide real-time results as tweets arrive. (3) Event ranking
(Section V). Given a particular region and a time frame, we
aim to find the localized events and burst events.

To summarize, we make the following contributions.
• To the best of our knowledge, we are among the first

to study hierarchical spatio-temporal hashtag clustering
techniques over the Twitter stream. This is a novel
application and it aims to provide real-time interactive
exploration of Twitter data.

• We develop an efficient one-pass hashtag clustering algo-
rithm, which can handle content-evolving hashtags in an
online manner.

• Given a particular time span and region, we have defined
the semantics of burst localized events and propose an
efficient method for event ranking.

• Inspired by data cubes, we have proposed a structure
for aggregation with time hierarchy and space hierarchy,
which can merge newly generated results with historical
results in an incremental way.

The rest of this paper is organized as follows. We introduce
the overall framework in Section III. In Section IV, we propose
a one-pass event identification algorithm. In Section V, we
study how to rank events to discover burst localized events.
Experimental results are provided in Section VI. The related
work is covered in Section II. Finally, we conclude the paper
in Section VII.

II. RELATED WORK

Data Cube. Our work is mainly inspired by the data cube
[3] from the database literature, which is used for organizing
and exploring multidimensional data with operations like slice,
dice, drill up/down. Our work can be considered as an exten-
sion of the traditional data cube for Twitter data. There are
several differences: (1) STREAMCUBE is constructed incre-
mentally over the Twitter stream according to a time hierarchy
and a space hierarchy. (2) The semantic meaning of each
cube is different. We aim to provide human-readable events
(i.e., clusters of hashtags). (3) Given a cube with respect
to a particular time frame and region, we aim to provide a
meaningful ranking (finding burst events and local events),
which is not considered in the traditional data cube.
Clutering Techniques for Social Media. Clustering tech-
niques for social media has attracted many researchers re-
cently [4]. Existing work on clustering techniques for social
media can be classified into three categories: (1) Tweet-
based clustering [5]–[9], which is an extension of the tra-
ditional text clustering. Different from high quality news,
tweets are short and noisy. They either argument the tweets
with external knowledge base [5], term relatedness [6], or
propose a more advanced similarity measurement [8]. (2)
Burst-keyword-based clustering [1,10]. These work focus on
the burst keywords instead of single tweets. However, this will
only cover partial events with high burstiness. (3) Hashtag-
based clustering. The common drawback of tweet-based clus-
tering and burst-keyword-based clustering is that their results
are less human readable. Our work defines an event as a cluster
of hashtags, which are more expressive since they are user-
provided keywords. Moreover, our hashtag-based clustering
can overcome the drawbacks of noisy tweets in a more elegant

1562



TABLE I
COMPARISON WITH EXISTING WORK

Method SUMBLR
[7]

TMONITOR
[10]

SMCA
[30]

Ours

Tweet Level
√ √

Hashtag Level
√ √

Zoomable
√ √

Interpretable Partial
√ √

Ranking Partial
√

way. To the best of our knowledge, hashtag clustering has not
been well studied. The most relevant work are [11] and [12].
However, both of them consider hashtags as static documents
while our work deals with content-evolving hashtags.

Event Ranking. We are particularly interested in finding burst
events and local events. [13] proposes a sketch-based approach
for detecting localized events. [14] also employ the sketch
structure for burst detection. Given a term, [15,16] identify
its bursting time interval and region in polynominal time. The
common drawback of these work is that they aim to find burst
patterns or localized patters from the whole dataset, where
only a fraction of events can be detected. In contrast, our work
aims to give an overall ranking for all the events in the chosen
cube w.r.t. to a particular time frame and region.

Other Applications. Although not directly related, our work is
inspired by many other applications in social media. Location-
based social network [17]–[19] connects users based on their
locations, where different variations of spatio-textual index
are studied. Information visualization [20]–[22] helps users
to explore Twitter events interactively, where different ways
to organize tweets are proposed. Real-time search [23]–[26]
studies how to incrementally update the index to keep up
with the Tweet stream, where recent tweets are preferred.
Spatio-temporal topic modeling [27]–[29] employs probabilis-
tic graphical models to explain the relation among location,
time and topics. Recently, [21] has proposed a framework for
visualizing stories extracted from a large corpus of documents
with a complex offline optimization method. However, it
cannot be applied to the real-time Twitter stream.

The difference between our work and existing work is
summarized in Table I. Firstly, existing work can be classified
based on the clustering objects. SUMBLR [7] and TMON-
ITOR [10] are designed to cluster short and noisy tweets,
where data points are static. SMCA [30] and our method are
hashtag-based clustering algorithms, where the content of the
data points keeps changing as tweets arrive. The advantage
of hashtag clustering algorithms is that the results (hashtag
clusters) are human-interpretable. Moreover, thanks to the
spatial-temporal hierarchy, our method supports zooming in
and zooming out with different time and space granularity.
Finally, our framework has a ranking component to detect local
events and burst events since it would be too hard for human to
keep track of all the clusters. All the methods listed in Table I
are used as baselines in our experimental study.

Tweet Stream

Hashtag 

Clustering

Disk-based Storage

Fig. 2. Framework

III. THE OVERALL FRAMEWORK

The overall framework is shown in Figure 2. STREAMCUBE
has three components: (1) spatial-temporal aggregation, (2)
hashtag clustering, and (3) event ranking. As shown in Fig-
ure 2, events are organized according to a space and a time
hierarchy. In this case we can provide aggregation results
immediately when a user is exploring events with different
time and space granularity.
Space Hierarchy. We use a quad-tree like structure to or-
ganize the global space into hierarchy. (1) The top level
represents the global space. (2) The global space is divided
into four smaller regions with equal size at the second level.
(3) For each region at the second level, it is further split into
four sub-regions with equal size at the third level.

This space hierarchy has a nice support for exploring Twitter
data on a zoomable digital map like Google Map or Bing Map,
since their map tile system also uses this hierarchy. However,
it is also possible to organize the space into a hierarchy of
countries, states, cities, and districts.
Time Hierarchy. Similar to the space hierarchy, the time
hierarchy is defined as follows: (1) The top level corresponds
to the coarsest granularity, which is one day in the example
shown in Figure 2. (2) The second level has two 12-hour time
frames. (3) Then each 12-hour time frame is further split into
two 6-hour time frame. The splitting rule applies for the rest
of the levels.
Connecting Time Hierarchy to Space Hierarchy. Each time
frame has a nested space hierarchy. For example, we can see
from Figure 2 that each 6-hour time frame has a nested space
hierarchy. In this way, given a fixed time frame, users can
explore different events with different space granularity. Note
that we only need to keep events from the last 6 hours in
memory for increment updates. Historical data are fixed and
flushed into disk-based storage.

With the knowledge of the time hierarchy and space hi-
erarchy, now we introduce our spatial-temporal aggregation
algorithm. The pseudo-code is shown in Algorithm 1, which
mainly has three steps:
Construct new cubes (lines 1-4). For each tweet d from
the current time frame, we first assign the tweet to its cube
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Fig. 3. Spatial-temporal Aggregation

from the lowest level of space hierarchy according to its
geographical information (line 1). Note that each region can
have an independent working thread. Thus all the regions from
the lowest level can be updated in parallel.

For the chosen cube (line 2), we call
hashtag-clustering method (line 3), which either
changes the content of an existing event or create a new
event. In either case, we call update-event-ranking
method (line 4) to update event ranking scores.
Spatial merge (lines 5-7). This step merges the newly gener-
ated small cubes into large cubes according to the space hier-
archy. We illustrate this process with Figure 3a. In Figure 3a,
region #14 has four children (region #141, #142, #143,
and #144). Each of the children contains newly generated
event lists for the past 6 hours. By calling spatial-merge
(line 7), the events from regions #141, #142, #143, and
#144 are combined into events in region #14. The challenge
is how to define the semantics of merging events. For example,
region #141 has an event a, and #142 has two events b and
c. It is not clear whether we should merge a with b or with c,
or keep them as separate events.
Temporal merge (lines 8-10). This method merges the newly
generated small cubes into large cubes according to the time
hierarchy. We will illustrate this process with Figure 3b.
Starting with the regions from the lowest level of the space
hierarchy, we have newly generated red-colored region #141,
#142, #143, and #144, temporal aggregation will merge
them with blue region #141, #142, #143, and #144,
respectively. Thus from two 6-hour cubes we can get a 12-hour
cube, as shown in the second bucket of Figure 3b. The newly
generated 12-hour cube will be stored in the third bucket, thus
we need another 12-hour cube to get a 24-hour cube. The same
rule applies to red #14 and blue #14 from the upper level.

IV. HASHTAG CLUSTERING

Before aggregating events according to the spatial-temporal
hierarchy, hashtag clustering is performed at the lowest level
of the hierarchy. Different from existing tweet clustering al-
gorithms, we treat hashtags as basic data points for clustering.
First we introduce the concept of hashtags.

Definition 1 (Hashtag). A hashtag is a word or phrase
preceded by ‘#’, and is used to identify messages on a specific
topic.

Example. We randomly picked an example tweet discussing

Algorithm 1: Spatial-temporal Aggregation

Input: D={d1, d2, ..., dn}: tweet stream from the current
time frame t

Output: The updated STREAMCUBE
1 for each tweet d ∈ D do
2 cube ← cubes[t][d.region]
3 cube.hashtag-clustering(d)
4 cube.update-event-ranking()

5 for each space level sl from bottom to top do
6 for each region at space level sl do
7 cubes[t][region] ← spatial-merge(cube,

cube.children())

8 for each space level sl from bottom to top do
9 for each region at space level sl do

10 cubes[2t][region] ←
temporal-merge(cubes[t− 1][region],
cubes[t][region])

TABLE II
FREQUNTLY CO-OCCURRED HASHTAGS

Hashtag Frequently Co-occurred Hashtags
NBA Heat Lakers Knicks Bulls Celtics

GRAMMYs Grammys2014 lorde daftpunk eredcarpet
Christmas xmas santa love family holidays

the United States presidential election of 2012. “Why did
Mitt Romney lose the presidential election? Here is a
roundup of conservative commentary. #Election2012”,
where hashtag ‘#Election2012’ is used to indicate the topic
of the message.

Hashtags play important roles in Twitter and have many
advantages: (1) Hashtags are human-readable keywords and
less noisy. Only user consented hashtags can become popular.
(2) Hashtags, when represented by its tweets, can be seen
as long documents and are easier to find their semantic
relatedness, which can lead to good clustering results.

With the knowledge of hashtags, we now give a formal
definition of events.

Definition 2 (Event). An event is a group of hashtags that
focus on the same topic.

Example. The United States presidential election of 2012 can
be described with hashtags ‘#Election2012’, ‘#Obama’, and
‘#Romney’, where ‘#Obama’ and ‘#Romney’ represent two
main candidates in the campaign.

A. Hashtag Representation and Similarity

Hashtags can have different representations in different
contexts.
A Hashtag as a bag of words. Given a hashtag h, it can
be represented as a bag of words, which is an aggregation of
all the tweets that contain h. Although it is hard to determine
which word is important in a single tweet, it is possible to
find out the important words for a hashtag. For example, on
Jannuary 26, 2014, hashtag ‘#GRAMMYs’, which refers to
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the grammy awards, became widely adopted by Twitter users.
The top words all refer to the popular musicians in the awards.

Formally, let W denote all the words, hashtag h is repre-
sented as a normalized weighted vector

hword = (w1, w2, ..., w|W |) (1)

where wi is the weight of the i-th word and ||hword|| = 1.
A Hashtag as a bag of hashtags. According to our dataset,
55% hashtags have co-occurred with other hashtags. Co-
occurred Hashtags are user-provided examples for hashtag
clusters. For example, we have a tweet that says ‘Five lessons
for the UK from Obama’s victory, #Obama #Romney
#Election2012.’. This tweet contains three hashtags, i.e.,
‘#Obama’, ‘#Romney’, and ‘#Election2012’. It indicates
that these hashtags are related to each other. We have listed
more examples in Table II.

Formally, let H denote the hashtag set, hashtag h is repre-
sented as a normalized weighted vector

htag = (h1, h2, ..., h|H|) (2)

where hi is the weight of the i-th hashtag and ||htag|| = 1.
With the above knowledge, we introduce our hashtag rep-

resentation and event representation.
Hashtag Representation and Similarity. Let hi

word and hi
tag

denote the word vector and hashtag vector of the i-th hashtag
hi. Given two hashtag h1 and h2, their similarity is defined as

sim(h1,h2) = α · cos(h1
word,h

2
word) + β · cos(h1

tag,h
2
tag)

= α
h1
word,h

2
word

||h1
word|| · ||h

2
word||

+ β
h1
tag,h

2
tag

||h1
tag|| · ||h

2
tag||

= α

|W |∑
i=1

w1
iw

2
i + β

|H|∑
i=1

h1ih
2
i

= (α
1
2 h1

word, β
1
2 h1

tag) · (α
1
2 h2

word, β
1
2 h2

tag) (3)

where α and β are user-specified weights and α+ β = 1. We
set β to 0.7 in this paper. From the above equation, we can
see that a hashtag can be represented as a vector, i.e.,

h = (α
1
2 hword, β

1
2 htag)

Event Representation and Similarity. Recall that an event is
a group of hashtags. Thus events are represented in the same
way with hashtags, i.e.,

e = (α
1
2 eword, β

1
2 etag)

Different from tweets, the content of a hashtag is evolving
with more tweets coming in. In other words, similar hashtags
may become not so similar as time goes by. This brings us
a new problem: how to cluster content-evolving hashtags.
We will address the problem in two steps: (1) We relax the
problem by assuming hashtags are static, and discuss how to
cluster a stream of hashtags in Section IV-B. (2) We introduce
how to cluster content-evolving hashtags from the tweet stream
in Section IV-C.

Algorithm 2: HASHTAG-CLUSTER-STATIC(E, h)
Input: Event set E={e1, e2, ..., ek}
Hashtag h
Output: Updated event set E

1 e = nearest-neighbor(E, h)
2 if sim(e, h) > e.threshold then
3 add h to E as a new event

4 else
5 add h to the existing event e

Algorithm 3: NEAREST-NEIGHBOR(E, h)
Input: Event set E={e1, e2, ..., ek}
Hashtag h={w1, w2, ..., wn}
Output: Nearest neighbor e

1 for each word wi order by max_partial(wi) do
2 for each event e in the invert list of wi do
3 sim(h, e) += wh

i * we
i

4 Let e1 denote the most similar event
5 Let e2 denote the second similar event
6 if sim(h, e1) > sim(h, e2) +∑n

j=i+1max_partial(we
j ) · wh

j then
7 return e1

B. Clustering Static Hashtags

We have the following considerations when designing the
clustering algorithm: (1) Free from choosing the number of
clusters. Since new events can emerge at any time from
the hashtag stream, we cannot know the number of clusters
(events) in advance. (2) Avoid iterative computation. Since we
need to do clustering with one pass of data, iterative loops over
the data should be avoided.

With the above considerations, we proposed the
HASHTAG-CLUTER-STATIC algorithm, which is inspired
by the CluStream algorithm proposed in [31]. As shown
in Algorithm 2, the algorithm has two steps:
• Locate the Nearest Neighbor (line 1). Given a hashtag h

to be clustered, we first locate its nearest neighbor in
the current event list, which is the best candidate for
absorbing the hashtag.

• Check the Absorbing Condition (line 2). Given the
nearest neighbor e, we check whether hashtag h is similar
enough to be absorbed into the e based on an e-related
threshold (e.threshold at line 2).

Now we introduce how to speed up the nearest neighbor
computation and how to choose a reasonable threshold.
Fast Nearest Neighbor Computation. A naive implementa-
tion is to compute a similarity score between the new hashtag
and each of the existing clusters. The time complexity is
O(kd), where k is the number of clusters and d is the number
of dimensions. Recall that frequently co-occurred hashtags are
user provided examples for clustering. So we use the following
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Fig. 4. Nearest Neighbor Search

heuristic to reduce the number of candidates.

HEURISTIC 1. (Candidate Pruning by Co-occurrence) A
candidate can be pruned for nearest neighbor search if it has
no co-occurrence with the current hashtag.

According to our dataset, a hashtag has co-occurred with 9
hashtags on average. Thus this pruning rule can significantly
reduce the candidate size.

However, popular hashtags still co-occurr with many hash-
tags. For example, ‘#GRAMMYs’ co-occurs with more than
three thousand hashtags. This motivates us to find more
advanced pruning techniques. Remind that hashtags are rep-
resented as weighted vectors and the cosine similarity score
is the addition result of many partial scores (see Equation 3).
By treating the current hashtag as a query, and the existing
k clusters as indexed documents, we can use an inverted
index to speed up the computation, which is widely used in
information retrieval. Particularly, given a hashtag h, we adopt
TAAT (Term-at-a-time) [32] to comput the nearest neighbor.
The pseudo code is shown in Algorithm 3. We will introduce
this algorithm with an example shown in Figure 4. Suppose we
have two events e1 = (0.8, 0.1) and e2 = (0.1, 0.2), and let w1

and w2 denote the first and the second dimension, respectively.
Suppose the current hashtag is h = (0.8, 0.2). Scanning the
first row in the inverted index, we can get sim(h, e1) = 0.64
and sim(h, e2) = 0.08 (lines 1-3). We know that the max
partial value for the second row in the inverted index is 0.2.
Since we have sim(h, e1) > sim(h, e2) + 0.2 ∗ 0.2, we can
conclude that e1 is the nearest neighbor.

Absorbing Condition. The minimum threshold for event e is
the nearest distance between e and any other clusters. Suppose
the most similar event is e′. If the sim(h, e′) is smaller than
sim(e, e′), it is better to treat hashtag h as a new cluster, since
e and e′, even with a bigger similarity score, belong to two
different clusters.

C. Clustering Content-Evolving Hashtags

In this section, we discuss how to cluster content-involving
hashtags. We have the following considerations: (1) Only
cluster hashtags mentioned by enough number of tweets. When
a new hashtag emerges, it only has few tweets. Under this
situation, the hashtag can be an outlier, in which case it may be
an personal event-irrelevant hashtag, or a spamming hashtag. It
is better to keep a hashtag as a cluster alone instead of merging
it into existing clusters. (2) Adjust clustering results as the
content of hashtag evolves. Two similar hashtags may become
dissimilar, and two isolated hashtags may become similar,
since the tweets are affecting hashtag content continuously.

Algorithm 4: HASHTAG-CLUSTER-DYNAMIC(E, d)
Input: Event set E={e1, e2, ..., ek}
Tweet d
Output: Updated event set E

1 if d.hashtag not in E then
2 add d.hashtag to as a new event to E with an

inactive status
3 else
4 e ← FIND-EVENT(d.hashtag)
5 update e with to incorporate new tweet d
6 if e.status is still inactive then
7 do nothing

8 else if e.state transfers to active status then
9 HASHTAG-CLUSTER-STATIC(E, h)

10 else
11 if h.count reach check point then
12 e′ ← e \ h
13 if sim(h, e′) > e′.threshold then
14 HASHTAG-CLUSTER-STATIC(E, h)

15 if e.count reach check point then
16 HASHTAG-CLUSTER-STATIC(E, e)

We should provide ‘split’ and ‘merge’ operations to adjust the
clustering results.

With the above considerations, we designed the
HASHTAG-CLUSTER-DYNAMIC algorithm as shown in
Algorithm 4 to cluster content-evolving hashtags. It has the
following parts:

Handling new hashtags (lines 1-2). As discussed before it
is the best to leave a new hashtag as an isolated cluster. The
hashtag stays in an inactive status until it is supported by
enough tweets.

Handling inactive events (lines 4-9). First, we update the
event to incorporate the new tweet (lines 4-5). Second, we
check the status of the updated event. If the event still does
not get enough tweets, we keep the event isolated (lines 6-7).
If the event’s status becomes active after the update, we treat
it as a static hashtag and call HASHTAG-CLUSTER-STATIC
to cluster it (lines 8-9). In our system, a hashtag has to be
mentioned by more than 30 tweets to become active.

Handling active events (lines 11-16). If the event is already
active, we check whether this update can lead to (1) a split
operation (lines 11-14), which remove the event from the
cluster and re-clusters it, or (2) a merge operation (lines 15-
16), which tries to merge the cluster with other clusters. Note
that it is impractical to check split and merge condition on
every update, since a single tweet has limited impacted on the
hashtag content. A more efficient way is to check split and
merge condition at certain interval. We define the check point
as every thirty updates.

1566



Longitude

(a) Burstiness

Longitude

(b) Burstiness

Fig. 5. Localness

D. Spatial-temporal Aggregation

Spatial aggregation from low level to higher level is equiv-
alent to zooming out on maps. By time aggreagtion, users can
see a week’s event report instead of day’s event report. The
merge operation is the key in spatial-temporal aggregation.

Suppose we want to merge two events e1, and e2 from event
sets E1 and E2, respectively. We have following cases when
merging e1 and e2:

Case 1: e1 is equal to e2. In other words, they are represented
by the same group of hashtags. Thus we can directly merge
e1 with e2 based on the hashtag.

Case 2: e1 has no overlap with e2, i.e., they are represented
by different groups of hashtags. Since e1 and e2 either come
from different time frames or different regions, it is very likely
that e1 and e2 correspond to different events.

Case 3: e1 and e2 are partially overlapped. In this case, we
merge the hashtags in common. Then we check whether we
can absorb the rest of the hashtags. For example, suppose e1 =
(h1, h2) and e2 = (h2, h3). First, we merge h2 and use it as
the core. Then we calculate whether h1 and h3 are within the
threshold of h2 to check whether we can absorb h1 and h3.
If h1 or h3 cannot be merged, they will be re-clustered.

V. EVENT RANKING

Given a particular region and a time frame, event ranking
helps users find localized events in the region and burst events
in the time frame.

A. Ranking Factors

An event can be ranked from different perspectives. We
consider three measurements in this paper: (1) popularity, (2)
burstiness, and (3) localness. In the following, we give formal
definitions and illustrate the concepts in Figure V-A.
Popularity. Given a cube with respect to region r and frame
t, the popularity of event e, i.e., pop(e), is defined as

popularity(e) =
freq(e)

N
(4)

where freq(e) is the frequency of e in this cube measured by
the number of tweets, and N is the total number of tweets in
the cube. We use the normalized frequency because different
time frame (weekday and weekends) are not equally active. So
does different regions (Twitter may be less popular in some
countries).

Burstiness. Let (pt−k, pt−k+1, ..., pt−1) denote the popularity
of the event in previous k time frames before t, where fi
denotes the popularity of the event in the i-th time frame. The
burstiness is defined as

burstiness(e) =
pt − µ
σ

(5)

where µ and σ are the mean and the standard deviation of
(pt−k, pt−k+1, ..., pt−1), respectively. As shown in Figure 5a,
we model the popularity history as a gaussian distribution.
The burstiness of an event is measured by how far away the
popularity goes up compared with its normal state. Thus we
use standard score, which represents the number of deviations
the popularity above the mean.
Localness. Let (p1, p2, ..., pn) denote the event popularity
in n different regions, where pi denotes the popularity of the
event in the i-th region. The localness is defined as

localness(e) =
pr − µ
σ

(6)

where µ and σ are the mean and the standard deviation of (p1,
p2, ..., pn), respectively. As shown in Figure 5b, the localness
is defined in a similar way with burstiness.

B. Learning Ranking Functions

Given all the ranking factors, we adapt a classification-based
approach to learn a ranking function. Particularly, we choose
the logistic regression model, which is a linear combination
of all the ranking factors.

Definition 3 (Ranking Score). Given a region r in time frame
t, the ranking score for an event e = {h1, h2, ..., hk} is the
weighted averaged score of score(h).

score(e) =

k∑
i=1

wiscore(hi)

= α
k∑

i=1

wipop(hk) + β
k∑

i=1

wiburst(hk) + γ
k∑

i=1

wilocal(hk)

= α· pop(e) + β· burst(e) + γ· local(e) (7)

where
• wi is the weight of hashtag hi and is defined as ni

n , where
ni represents the size of hashtag hi and n represents the
size of the event.

• α, β, and γ are linear weights that represent the pref-
erence for each factors (i.e., popularity, burstiness, and
localness).

• pop(· ), burst(· ), and local(· ) represent the popularity,
burstiness, and localness for a hashtag or an event,
respectively.

Learning α, β, and γ. We treat popularity, burstiness, and
localness as features in the logistic regression model. Then
we manually labeled top-10 important hashtags for two weeks
in the USA, which are used as positive examples. Then we
trained the logistic regression model to fit the manually labeled
data to get the parameters.
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Algorithm 5: Top-k Event Ranking

Input: α, β, γ: user-specified weights
k: number of events to retrieve
Lpop, Lburst, Llocal: sorted event lists according to
popularity, burstiness, and localness
Output: Top-k events Ek

1 while i from 1 to |E| do
2 epop ← Lpop[i]
3 eburst ← Lburst[i]
4 elocal ← Llocal[i]
5 score(epop) ← COMPUTE-SCORE(epop)
6 score(eburst) ← COMPUTE-SCORE(eburst)
7 score(elocal) ← COMPUTE-SCORE(elocal)
8 update top-k events Ek with score(epop),

score(eburst), and score(elocal)
9 initialize an event emax with epop.populalrity,

eburst.burstiness, elocal.localness
10 threshold = COMPUTE-SCORE(emax)
11 if |Ek|.min > threshold then
12 return Ek

C. Efficient Top-k Ranking

Although we can learn the weights for each ranking factors
according to human labeled data, different applications may
have different preferences for each ranking factors. Some
users may prefer popular events, while others may prefer local
events or burst events. Therefore, we designed a more flexible
way to organize the events which can quickly retrieve the top-k
events given a set of ranking factor weights.

Inspired by the TA algorithm [33], we organize events in
three sorted lists: (1) events sorted by popularity, (2) events
sorted by burstiness, and (3) events sorted by localness. Given
the weight for each ranking factor, we can compute the top-
k events without scanning the entire event list. As shown in
Algorithm 5, the TA algorithm contains the following steps:
(1) Retrieve events at the i-th position from each sorted list
(lines 2 to 4). (2) Perform random access to get the popularity,
localness, and burstiness of the current event, and compute the
ranking scores. (3) Insert the current events to the top-k event
set Ek. (4) Compute the maximum possible scores for the
unseen events (lines 9 to 10) and terminate if all the scores
of the current top-k events are higher than the threshold.

VI. EXPERIMENTAL STUDY

A. Dataset

We crawled 9 million tweets with 2 million hashtags using
Twitter’s streaming API from December, 2013 to January,
2014 . We pre-processed the data with the following steps:
(1) For geo-tagged tweets, geographical coordinates can be
directly obtained. (2) For tweets without latitude and longitude
coordinates, we roughly infer the coordinates according to
users’ location, since users may provide their countries/cities

in the profile. Specifically, given all the <location, geograph-
ical coordinates> pairs extracted from geo-tagged tweets, we
learn a density distribution for location. For a tweet without
geographical coordinates, we randomly select a coordinate
according to the density distribution of the location. Since we
aim to find aggregated results (what is happening in a city),
coordinates do not need to be exactly accurate. (3) All the
tweets are stemmed using the Porter Stemmer.

B. Evaluation Methodology

Clustering and Ranking Quality. In Section VI-D, we first
present the results of qualitative evaluation by analyzing some
real cases, which gives us the concept of good clustering and
ranking. Then we show our quantitative evaluation result in
Section VI-E based on a manually labeled data.

Scalability. Since we are constructing data cubes in real-time,
it is important to make sure our algorithm can handle tweets in
a highly efficient way with a high throughput. Also it should
scale well to large dataset with limited memory. The results
will be discussed in Section VI-F and Section VI-G.

C. Baselines

To the best of our knowledge, STREAMCUBE is the first
framework which aims to study hierarchical spatio-temporal
hashtag clustering, which makes it possible to explore Twitter
data with different space and time granularity in real-time.
Thus we adapt some recent work on tweet clustering and burst
event detection as our baselines.

SUMBLR. SUMBLR (SUMmarization By stream cLusteR-
ing) [7] is an algorithm for efficient online tweet clustering. It
has two stages: (1) Batch clustering of tweets as initial clusters,
where each tweet is treated as a data point. (2) Incremental
clustering, where each tweet is either assigned to its nearest
neighbor or become a new cluster.

SMCA. SMCA (Scalable Multi-stage Clustering Algorithm)
[30] is an algorithm for clustering tweet with the enhancement
of hashtags. It has two stages: (1) Batch clustering of hashtags
as the initial clusters. This is an offline stage, where each
hashtag is an aggregation of tweets. K-means is used for
batch clustering. (2) Online clustering of tweets, this is an
online stage, which each tweet in the stream is assigned to
the nearest clusters. If the tweet contains hashtags, then it
is assigned directly to clusters based on its hashtags, where
nearest neighbor search is avoided.

Both the above two baselines focus on clustering instead
of event ranking. Thus we have another baseline that supports
finding burst events.

TWITTERMONITOR. TWITTERMONITOR [10] is the state-
of-the-art event identification algorithm for Twitter stream. It
consists of two components: (1) Burst keyword identification,
which is a real-time one-pass algorithm to detect burst key-
words. (2) Event identification, which further uses the keyword
co-occurrences information to cluster keywords into groups.
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D. Qualitative Evaluation

We first illustrate the top-5 global events in January detected
by STREAMCUBE and other baselines in Section VI-D1. Since
the STREAMCUBE support zoom in with different time and
space granularity. We analyze the detected local events in four
countries (USA, UK, Australia, and Canada) in Section VI-D2
and burst events in four weeks of January in Section VI-D3.

1) Global Events in January: The results of four algorithms
are shown in Figure 6.
StreamCube. The top-5 events detected by STREAMCUBE
are: (1) ‘Grammys’, which are famous music awards for
recognizing outstanding musicians. The ceremony is broadcast
on January 26. (2) ‘PeoplesChoices’, which is an award
for honoring the best in popular culture and is presented on
January 8. (3) ‘HappyNewYear’, which is a hashtag used for
celebrating the new year of 2014. (4) ‘EXABeliebers’, and
‘EXADirectioners’, which are two hashtags used for voting
musician Justin Bieber, and music band One Direction on
a show on a radio station called EXA during the second

week of January. (5) ‘GoldenGlobe’, which is an award in
film and television industry and is presented on January 12.
The bold hashtag represents the one with the biggest size in
the cluster. As we can see, all these events are quite human
readable and unique to the time frame of January. Also we
can see that hashtag clusters are self-explainable in summa-
rizing events. For example, from the cluster {‘Grammys’,
‘Grammys2014’, ‘Lorde’, ‘DaftPunk’} we can infer that
the Lorde (a singer) and Daft Punk (musical group) have
performed in the Grammys ceremony and have attracted
much attention from the users in Twitter. Another example
is {‘GoldenGlobes’, ‘BreakingBad’, ‘AmericanHustle’},
where we can infer that Breaking Bad (a TV show) and
American Hustle (a movie) have won the Golden Globes
awards.

SMCA. As Figure 6 shows, the top-5 events detected by
SMCA are: (1) ‘PeoplesChoices’. (2) ‘TeamFollowBack’,
which is a long last popular hashtags used for gain followers.
(3) ‘gameinsight’, which is a hashtag for discussing ipad
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and android games. (4) ‘nowplaying’, which is used for
denoting what the user is currently listening to, watching
or playing. (5) ‘Grammys’. The main problem of SMCA
is that popular events may not carry valuable information.
For example, ‘nowplaying’ is popular in every month while
‘GoldenGlobes’ detected by STREAMCUBE only happens in
January. When we ranking the events in January, it is more rea-
sonable to rank ‘GoldenGlobes’ higher than ‘nowplaying’.
The same problem exists for ‘TeamFollowBack’, which hap-
pens in every month and carries less information. The main
reason for such ranking is that SMCA is designed to cluster
hashtags instead of find burst events and local events. Thus
the final ranking is mostly dominated by popular events.

TWITTERMONITOR. TWITTERMONITOR is designed to de-
tect hot events base on burst keywords. The top-5 events
detected are: (1) ‘ExaBeliebers’, which is a hashtag to
support Justin Bieber (a singer) for a ratio session. (2)
‘Belletstalk’, which represents a fund for supporting men-
tal health organizations. (3) ‘ThisCouldBeUsButYouPlayin’,
which is used to highlight awkward photographs of couples,
(4) ‘JamesFollow’, which is used to support James and
is heavily used his fans, and (5) ‘Grammys’. TWITTER-
MONITOR mainly has two drawbacks: (1) Burst keywords
have lower quality and carries less information compared
with burst hashtags. For example, TWITTERMONITOR clusters
‘Belllettalk’ with ‘mental’. In contrast, STREAMCUBE clus-
ters ‘Belllettalk’ with hashtag ‘mentalhealth’, which make it
easier for users to understand that ‘Bellelettalk’ is an event
related to ‘mentalhealth’. (2) Considering burstiness is not
enough for a good event ranking. For example, TwitterMoniter
ranked ‘JamesFollow’ among the top-5 events in January,
which is a hashtag for encouraging people to follow a user
called James. However, there may be other hashtags that only
have high burstiness but also keep popular during the whole
January, such as ‘peoplechoice’ and ‘Grammys’. It is more
reasonable to rank these hashtags higher than ‘JamesFollow’.

SUMBLR. All the top-5 hashtags have been introduced
before. The first problem of SUMBLR is that the events does
not have clear boundaries and it is easy to mix different events.
Since tweets are extremely short, the clustering is easy to be
affected by noisy tweets. For example, ‘PeoplesChoice’ and
‘GlodenGlobes’ are clustered into one cluster, but they are
two independent events. The second problems is words are not
easy to understand. For example, ‘Grammys’ are clustered
with ‘perform’ and ‘love’. However, the ‘love’ here refers to
a song performed in Grammys called ‘the same love’. Finally,
SUMBLR has problem in finding valuable events that are
particular in January, which is similar to SMCA.

2) Local Events in January: Different from existing al-
gorithms, STREAMCUBE enables us to zoom in with finer
space granularity. In this study, we show the detected events
in four countries: United States, United Kingdom, Canada, and
Australia. We can find many local events in each country as
shown in Figure 7. Since most of the events in US has been

introduced. We will focus on the other countries.

United Kingdom. We can find three localized events: (1)
‘CBB’, which is short for Celebrity Big Brother, a popular
TV show in UK. (2) ‘TheVoice’, which is a talent show.
(3) ‘Sherlock’, which is a crime drama and is broadcast in
January. Although ‘Grammys’ and ‘PeoplesChoice’ are not
localized events, they have a high burst during January and
are very popular.

Canada. We can find three localized events: (1)
‘BellLetsTalk’ is a charitable program dedicated to mental
health in Canada. (2) ‘Canucks’ is an ice hockey team in
Canada. (3) ‘Vancouver’, is a city of Canada. Also we find
that ‘PeoplesChoice’ and ‘Grammys’ quite popular.

Australia. We can find four local events: (1) ‘AusOpen’
(Australian Open), which is a major tennis tournament held
in Melbourne, Australia. (2) ‘auspol’ (Australian politics) is
a hashtag used for discussing political issues. (3) ‘Ashes’,
which is the notional prize in a Test cricket series played
between England and Australia. (4) ‘Australiaday’, which is
the official national day of Australia.

From the results above, we can see that STREAMCUBE can
successfully detect local events given a particular region.

3) Events in Each Week of January: Besides zoom in with
finer space granularity, we can also zoom in with finer time
granularity. As shown in Figure 8, we listed top-5 events for
each of the four weeks in January in global space. As we
can see, different weeks have different popular events. For
example, ‘HappyNewYear’ only occurs in the first week. In
the second week, we find ‘BallondOr’ quite popular, which
stands for an award given annually to the best football player.
Users can use ‘BallondOr’ to support their favorite players.
We also find that ‘RoyalRumble’, which is a professional
wrestling event, attracts a lot of users in the fourth week.
From the results we can see that STREAMCUBE can provide
meaningful rankings for different time granularity.

To summarize, we can see from the examples that STREAM-
CUBE can not only find high quality hashtag clusters but also
detect local events and burst events.

E. Quantitative Evaluation

In the previous section, we have listed some examples on
hashtag clustering and ranking. In this section, we introduce
the quantitative evaluation results. Since it would be impos-
sible for human to rank all hashtag clusters manually. The
ground truth is constructed according to the following steps:
(1) Given a particular time frame and region, we merge the
top-50 ranked hashtag clusters from SUMBLR, TWITTER-
MONITOR, SMCA and STREAMCUBE as the initial candidate
set. (2) We asked 10 volunteers to rank the top-10 events
from the initial candidate set. (3) Since different users may
have different ranking, the final top-10 ranking are decided
by majority voting, assuming all the volunteers are equally
weighted. Finally, the ground truth consists of four parts: (1)
top-10 events for global space in January, which consists of
10 ranked clusters, (2) top-10 events for four countries (USA,
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TABLE III
CLUSTERING QUALITY

Metric SUMBLR TMONITOR SMCA STREAMCUBE

NMI 0.312 0.336 0.361 0.381
RI 0.609 0.642 0.684 0.717

TABLE IV
RANKING QUALITY

Metric SUMBLR SMCA TMONITOR STREAMCUBE

MAP 0.511 0.523 0.608 0.634

UK, Canada, and Austrilia), which are 40 ranked clusters, (3)
top-10 events for global space in each week in January, which
are 40 ranked clusters, and (4) top-10 events for four countries
in each week of January, which are 160 ranked clusters. In
total, we have 250 human annotated events as ground truth.

1) Clustering Quality: To evaluate how well our clustering
results match the gold standard classes, we use two widely
used metrics in clustering evaluation1: NMI (Normalized Mu-
tual Information) and RI (Rand Index).

As shown in Table III. STREAMCUBE outperforms other
algorithms in terms of NMI and RI. SUMBLR, which in-
crementally absorbs tweets to existing clusters, has the worst
performance. This implies a single tweet is too short for
computers to measure its semantic relatedness with existing
clusters. TWITTERMONITOR has a better performance than
SUMBLR because it uses the co-occurrences of burst key-
words for clustering, instead of treating tweets as plain docu-
ments. SMCA achieves the best clustering qualities among the
baselines. The main reason is that it treat hashtags as basic data
points in the initialization stage. However, it does not consider
the fact that hashtag content envolves over time, thus does not
provide any clustering adjustments as new tweets emerge.

2) Ranking Quality: We use Mean Average Precision
(MAP) to measure the ranking quality, which is a popular
metric in ranking problems. Given a ranked event list E =
(e1, e2, ..., en), the Average Precision (AP) is defined as

AP =

∑n
k=1 precision@k × isTopEvent(e)
the number of positive events

(8)

where isTopEvent(e) is an indicator function and equals 1
only when event e is labeled among the top-n events, otherwise
it equals 0. The number of positive events are 10 since we
selected top-10 events. With the knowledge of AP, MAP is
defined as the mean of all APs:

MAP =

∑N
i=1APi

N
(9)

As shown in Table IV, STREAMCUBE achieves the best
performance in terms of MAP. SUMBLR and SMCA does
not perform well on this task because they simply use
popularity-based ranking. TWITTERMONITOR achieves better
performance because it explicitly models burstiness into the
clustering algorithm. However, it does not take localized events
into consideration. Thus some localized events cannot get
high scores. Finally, by combining popularity, burstiness, and

1http://www-nlp.stanford.edu/IR-book
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localness into ranking function, STREAMCUBE successfully
outperforms others.

F. Scalability

Scalability is tested by measuring the running time for
different data size. As shown in Figure 9, TWITTERMONITOR
is the slowest algorithm. The main reason is that the set of
candidate of words is much larger than the size of hashtags.
Thus it takes more time to compute the similarities between
keywords. Both SMCA and SUMBLR achieve better per-
formance than TWITTERMONITOR since they are designed
for incremental clustering, and it takes less time to assign
a new tweet to an existing cluster. STREAMCUBE has the
shortest running time and scales well with different data size.
The main reason is that tweets are processed in a divide-
and-conquer fashion, in which case the clustering results are
merged according to the time and space hierarchy. Another
reason is that STREAMCUBE can efficiently find the nearest
neighbor given a new hashtag to be clustered.

G. Memory Usage

Memory usage is measured by the index size with differ-
ent data size. As shown in Figure 10, the memory usage
of TWITTERMONITOR is larger than other algorithms. The
main reason is that TWITTERMONITOR needs to maintain a
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similarity matrix for all pairs of keywords. SUMBLR takes
more memory at the early stage but remains stable for large
datasets. This is mainly because SUMBLR can detect and
remove out-dated clusters periodicity. SMCA takes less mem-
ory than SUMBLR because the tweets are first aggregated
by hashtags to save the space. However, the memory usage
of SMCA continues to grow as new hashtags keep emerging.
Finally, STREAMCUBE has the best performance among all the
algorithms. Similar to SMCA, STREAMCUBE takes less space
due to hashtag-based aggregation in the early stage. Similar
to SUMBLR, STREAMCUBE flushs out-dated clusters to disk.
So the memory usage remains stable for large datasets.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed STREAMCUBE to support hi-
erarchical spatio-temporal hashtag clustering, in which case
users can explore twitter data interactively with different time
and space granularity. To the best of our knowledge, this is
the first framework to support such application. Our approach
contains three components: (1) A spatio-temporal hierarchy
inspired by the quad-tree and the data cube. Hashtag clustering
is performed according to a divide-and-conquer strategy at
the lowest level of the hierarchy. Then clustering results are
merged incrementally in a bottom-up manner. (2) A single-
pass hashtag clustering algorithm. Different from existing
clustering techniques, we are dealing with content-evolving
hashtags. (3) Event ranking, which is designed to help users
identify local events and burst events.

STREAMCUBE can be extended in many directions. Firstly,
we can extend STREAMCUBE to support topic-based explo-
ration. For example, users explore events in a specific domain
such as politics, music, travel, breaking news, etc. This can be
considered as a four-dimension data cube (i.e., time, latitude,
longitude, and topic). Secondly, it is also important to develop
an alert mechanism to push information to users from the
server instead of waiting for user-initiated queries since users
cannot keep monitoring what is happening.
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