
Learning Robust Representations with Graph
Denoising Policy Network

Lu Wang1, Wenchao Yu2∗, Wei Wang3, Wei Cheng2, Wei Zhang1, Hongyuan Zha4, Xiaofeng He1∗, Haifeng Chen2

1 School of Computer Science and Technology, East China Normal University
2 NEC Laboratories America, Inc., 3University of California Los Angeles, 4Georgia Institute of Technology
1{luwang,xfhe}@stu.ecnu.edu.cn, zhangwei.thu2011@gmail.com, 2{wyu,weicheng,haifeng}@nec-labs.com,

3weiwang@cs.ucla.edu, 4zha@cc.gatech.edu

Abstract—Existing representation learning methods based on
graph neural networks and their variants rely on the aggregation
of neighborhood information, which makes it sensitive to noises in
the graph, e.g. erroneous links between nodes, incorrect/missing
node features. In this paper, we propose Graph Denoising Policy
Network (short for GDPNet) to learn robust representations from
noisy graph data through reinforcement learning. GDPNet first
selects signal neighborhoods for each node, and then aggre-
gates the information from the selected neighborhoods to learn
node representations for the down-stream tasks. Specifically, in
the signal neighborhood selection phase, GDPNet optimizes the
neighborhood for each target node by formulating the process
of removing noisy neighborhoods as a Markov decision process
and learning a policy with task-specific rewards received from
the representation learning phase. In the representation learn-
ing phase, GDPNet aggregates features from signal neighbors
to generate node representations for down-stream tasks, and
provides task-specific rewards to the signal neighbor selection
phase. These two phases are jointly trained to select optimal sets
of neighbors for target nodes with maximum cumulative task-
specific rewards, and to learn robust representations for nodes.
Experimental results on node classification task demonstrate the
effectiveness of GDNet, outperforming the state-of-the-art graph
representation learning methods on several well-studied datasets.

Index Terms—graph representation learning, graph neural
networks, graph embedding, reinforcement learning

I. INTRODUCTION

Recently, remarkable progress has been made toward graph

representation learning, a.k.a graph/network embedding, which

solves the graph analytics problem by mapping nodes in a

graph to low-dimensional vector representations while effec-

tively preserving the graph structure [1]–[4]. Graph neural

networks (GNNs) have been widely applied in graph analysis

due to the ground-breaking performance with deep architec-

tures and recent advances in optimization techniques [5], [6].

Existing representation learning methods based on GNNs, e.g.

GraphSAGE [7], Graph Convolution Networks (GCNs) [8],

[9] and Graph Attention Networks (GATs) [10], rely on the

aggregation of neighborhood information, which makes the

model vulnerable to noises in the input graph.

Good graph representations are expected to be robust to the

erroneous links, mislabeled nodes and partial corrupted fea-

∗Corresponding authors.

tures in the input graph, and capture geometric dependencies

among nodes in the graph. However existing approaches have

limited efforts on robustness study in this regard. In order

to overcome this limitation of graph representation learning in

handling noisy graph data, we propose Graph Denoising Policy

Network, denoted as GDPNet, to learn robust representations

through reinforcement learning. GDPNet includes two phases:

signal neighbor selection and representation learning. It first

selects signal neighbors for each node, and then aggregates

the information from the selected neighbors to learn node

representations with respect to the down-stream tasks.
The major challenge here is on how to train these two

phases jointly, particularly when the model has no explicit

knowledge about where the noise might be. We address this

challenge by formulating the graph denoising process as a

Markov decision process. Intuitively, although we do not have

an explicit supervision for the signal neighbor selection, we

can measure the performance of the representations learned

with the selected neighbors on tasks like node classification,

then the task-specific rewards received from the representation

learning phase can be used for trial-and-error-search. In the

signal neighbor selection phase, as shown in Fig. 1, GDPNet

optimizes the neighborhood for each node by formulating

the process of removing the noisy neighbors as a Markov

decision process and learning a policy with the task-specific

rewards received from the representation learning phase. In

the representation learning phase, GDPNet trains a set of

aggregator functions that accumulate feature information from

the selected signal neighbors of each target node. Thus in

the test time, the representations of unseen nodes can be

generated with the trained GDPNet with graph structure and

the associated node feature information. The task-specific

rewards computed w.r.t the down-stream tasks are passed to the

signal neighbor selection phase. These two phases are jointly

trained to select optimal sets of neighbors for target nodes

with maximum cumulative task-specific rewards, and to learn

robust representations for nodes.
In summary, our contributions in this work include:

• We propose a novel model, GDPNet, for robust graph

representation learning through reinforcement learning.

GDPNet consists of two phrases, namely signal neigh-

1378

2019 IEEE International Conference on Data Mining (ICDM)

2374-8486/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDM.2019.00177

Fig. 1. Illustration of the GDPNet model from the view of signal neighbor selection

bor selection and representation learning, which enables

GDPNet to effectively learn node representations from

noisy graph data.

• We formulate signal neighbor selection as a reinforce-

ment learning problem, which enables the model to

perform graph denoising just with weak supervision from

the task-specific reward signals.

• GDPNet is able to generate representations for unseen

nodes in an inductive fashion, which leverages both graph

structure and the associated node feature information.

II. APPROACH

We formulate the robust graph representation learning prob-

lem as sequentially selecting an optimal set of neighbors

for each node with maximum cumulative reward signals and

aggregating features from nodes’ optimal neighborhoods. In

this part, we formally define the problem, the environment

setting for signal neighbor selection, and the GDPNet model.

A. Problem Formulation

Given an attributed graph G = {E ,V, X}, where E is

the edge set and V is the node set. X ∈ R
|V|×D collects

the attribute information for each node where xv ∈ R
D

is a D-dimensional attribute vector of node v ∈ V . Note

that we can simply use one-hot encoding for node features

for a graph without attributes. Given a target node v, let

N (v) = {u1, u2, ..., u|N (v)|} be the one-hop neighbors of v.

We aim to find a lower-dimensional representation hv for

node v ∈ V . Firstly, a function f : 2N (v) → 2N̂ (v) is learned to

map a neighborhood set N (v) into a signal neighborhood set

N̂ (v), where N̂ (v) ⊆ N (v). Then the node representations

are generated based on the signal neighborhood set, h :

2N̂ (v) f−→ R
d . Given an order of the neighbors u1, ..., u|N (v)|,

we decompose the conditional probability of N̂ (v) given

N (v) as p(N̂ (v)|N (v)) = Π
|N̂ (v)|
t=1 p(at|N (v), a1, ..., at−1)

using chain rule [11], where at = {0, 1}, at = 1 indicates

selecting ut as a signal neighbor while at = 0 indicates

removing ut. We solve this signal neighbor selection problem

by learning a policy πθ(at|st) = p(at|N (v), a1, ..., at−1)
with neighborhood set N (v) and the predicted action values

{ai}t−1
i=1 as inputs. The objective of signal neighbor selection

is to select a subset of neighbors that maximize a given reward

function Rπ(N̂ (v)) = EN̂ (v)

[∑|N̂ (v)|
t=1 rt

]
, where N̂ (v) is

the generated signal neighborhood set, rt is the task-specific

reward used to evaluate the action at, and Rπ is the cumulative

reward function. The representation of node v can then be

learned by aggregating the neighborhood information from the

signal neighbors N̂ (v).
Selecting an optimal subset from a candidate set by max-

imizing an objective function is NP-hard which can be ap-

proximatively solved by greedy algorithms with a submodular

function [12]. With this observation, we design our reward

function that satisfies submodularity, and show that the pro-

posed GDPNet is mathematically equivalent to solving the

submodular maximizing problem. Thus our solution can be

bounded by (1 − 1
e)R (N (v)∗), where N (v)∗ is the optimal

neighborhood set.

B. Signal Neighbor Selection Environment

We formulate the problem of selecting a set of signal

neighbors from a given neighborhood set as a Markov decision

process (MDP) (S,A, P,R, γ), where S is the state space,

A is the action space, P is the state transition probability

matrix that describes the transition probability of the state

after taking an action, R is the reward function and γ is

discount factor of the MDP. The signal neighbor selection

process can be described by a trajectory with N̂ (v) time steps

s0, a0, r0, ..., s|N̂ (v)|, a|N̂ (v)|, r|N̂ (v)|. MDP requires the state

transition dynamics to satisfy the Markov property p(st+1|st).
Thus we learn a policy πθ(at|st) that only considers the

current state st.
In reinforcement learning, the agent learns a policy via

interacting with the environment. The main components (i.e.,

state, action, and reward) in the signal neighbor selection

environment are described as follows,

• State (S): The state st = [ht
v, hut] encodes the informa-

tion from the current node v and the selected node ut,

which is concatenation of the intermediate embeddings

ht
v and hut

of the target node v and the tth neighbor ut,

respectively. The calculation of ht
v and hut

are defined in

Section II-C. Consequently, a newly selected neighbor ut

will update the embedding of v from ht
v to ht+1

v which

can be viewed as state transition.

• Action (A): Given an order of the neighbors

u1, ..., u|N (v)| of node v, the policy πθ(at|st) maps the

state st into an action at = {0, 1} at each time step t,
t = 1, ..., |N̂ (v)|. a1 = 1 indicates u1 is selected as a

signal neighbor, while a1 = 0 means u1 is not selected.

1379

• Reward (R): Our goal is to find an optimal set of

signal neighbors N̂ (v) from a finite neighborhood set

N (v) to learn robust graph embedding for downstream

tasks such as node classification, link prediction and

node clustering. The downstream tasks can produce task-

specific scores as the reward signal for the signal neighbor

selection phase. To ensure that the combination of the

selected neighbors have maximum cumulative rewards.

We employ the submodular function framework to define

the marginal value reward function:

rt =
fc(AGG(xv, {xut

}))∑
ũ∈N̂ (v)t

fc(AGG(xv, {xũ})) (1)

where AGG(·) aggregates both the target node feature

xv and the neighbors’ features {xut
} to update the

representations of the target node [7], and fc(·) returns

the micro-averaged F1 score from the node classification

task when considers ut as the neighbor.

The environment updates the states from st = [ht
v, hut

]
to st+1 = [ht+1

v , hut+1
] by calculating the representations

ht+1
v = AGG(xv, {xũ, ∀ũ ∈ N̂ (v)t}) at time t + 1. It can

be considered as a state transition:

p(st+1|st) =
∑
at

πθ(at|st)p(st+1|st, at) (2)

If at = 1, N̂ (v)t = N̂ (v)t−1 ∪ {ut}, otherwise N̂ (v)t =
N̂ (v)t−1.

C. Graph Denoising Policy Network

With the definitions of the signal neighbor selection envi-

ronment, we introduce the GDPNet model which includes two

phases: signal neighbor selection and representation learning.

Given a target node v, GDPNet first takes its neighborhood

set N (v) as input and outputs a signal neighborhood subset

N̂ (v). Then the representations hv is learned by aggregating

the information from the signal neighborhood subset N̂ (v).
1) Determine the Neighborhood Order: As aforemen-

tioned, we use chain rule to decompose the signal neighbor

selection as a sequential decision making process. However, it

requires an order to make decisions. Here we design a high-

level policy to learn an order [u1, ..., u|N (v)|] for the policy πθ

to take action.

We define a regret score l for each neighbor to help deter-

mine the order. A neighbor with large regret score indicates

it will be selected with higher probability. At each time step,

we calculate the regret score of each neighbor and sample

one of the neighbor to be the tth neighbor. The regret score is

described as follows:

lk = W1 · ReLU(W2 · st), st = [ht
v, huk

] (3)

where uk is the k-th neighborhood in the neighborhood set

N (v) with a random order and W1,W2 are parameter matri-

ces. To reduce the size of N̂ (v) for computational efficiency,

we add an ending neighbor ue to N (v) for early stopping

purpose. When ue is sampled, the neighborhood selection

process of node v stops. We use the Softmax function to

normalize the regret scores, and sample one neighbor from

the distribution generated by Softmax to be the tth neighbor.

ut ∼ SOFTMAX([l1, l2, ..., le, ..., l|N (v)ct|]) (4)

where ut ∈ N (v)ct is the tth neighbor for signal neighbor

selection, N (v)ct = (N (v) \ N̂ (v)t). le indicates the regret

score of the ending neighbor ue. After selecting a neighbor

ut, we adopt the policy πθ to determine whether to select ut

as a signal neighbor. Then ut will be removed from N̂ (v)ct .

2) Signal Neighbor Selection: Given the tth neighbor ut,

GDPNet takes an action at = {0, 1} at time step t to decide

whether to select the ut. We will make |N̂ (v)| decisions

to select the signal neighbors for node v. Here the total

number of signal neighbors can be automatically determined.

As illustrated in Fig. 1, a policy πθ(at|st) is learned to map

the state st to the action at at time step t, t = 1, ..., |N̂ (v)|,
meanwhile the corresponding reward rt will be provided. Our

goal is to maximize the total reward of all the actions taken

during these time steps, which can be learned by the following

policy network,

πθ(at|st) = σ (W1 · ReLU(W2 · st))
at ∼ πθ ∈ {0, 1} (5)

where W1 and W2 are weight matrices shared with Eq. (3),

and action at is sampled from a Bernoulli distribution which

is generated by πθ(at|st).
3) Representation Learning: At each time step, GDPNet

calculates the embeddings of the target node v and the t-th
neighbor ut as follows,

ht
v ← AGG(xv, {xũ, ∀ũ ∈ N̂ (v)t}) (6)

hut ← AGG(xut , {∅}) (7)

where AGG(x, {yi, ∀i ∈ I}) = σ(W · MEAN({x} ∪ {yi, ∀i ∈
I}), xv and xut are the features of node v and ut respectively.

We computed the embedding of neighbor ut via its own feature

xut
, because the goal is to evaluate the individual contribution

of ut. In this work we only consider one-hop neighbors for

simplicity. The GDPNet model can be easily extended to

aggregate the information from multi-hop neighbors with an

augmented candidate neighborhood set for selecting the signal

neighbors.

As defined in Section II-B, the state at time step t,
st = [ht

v, hut], is a concatenation of the intermediate node

embeddings ht
v and hut . Eventually, the representations hv

and state st = [ht
v, hut

] can be obtained.

4) Iteration-wise Optimization: We consider an iteration-

wise optimization approach to optimize the GDPNet model,

which optimizes the signal neighbor selection phrase and

representation learning phrase iteratively to learn the policy

πθ and the representations hv . As for representation learning

phase, it aggregates the information from the signal neighbors

selected by πθ to learn an embedding hv for target node v.

Meanwhile, the policy πθ is trained with the states calculated

by hv and the corresponding rewards. In this paper, πθ is

1380

optimized with Proximal Policy Optimization (PPO), one of

the widely used policy gradient method [13].

max Es∼ρθold
,a∼q

[
πθ(a|s)
q(a|s) Qθold(s, a)

]
, (8)

s.t. Es∼ρθold
[DKL(πθold(·|s) ‖ πθ(·|s))] ≤ δ

where KullbackLeibler (KL) divergence penalty is used to

control the change of the policy at each iteration to perform

a trust region update with a threshold δ. q(a|s) and Qold =∑T
i=t γri are the policy and Q-value, respectively, which are

saved before the current time step during training. ρθold is the

discounted state distribution defined as,

ρθold(st) =
T∑

t=0

γt−1p(st = s|πθold) (9)

III. EXPERIMENT

Experiments are conducted to evaluate the robustness of

the representations learned by the proposed GDPNet model.

As for quantitative experiments, we focus on two tasks: (1)

Robustness Evaluation, we use micro-averaged F1 score to

evaluate our model against baselines on node classification

task, and (2) Denoising Evaluation, we evaluate the denoising

capability of GDPNet by comparing with baselines running

on the denoised graph generated by GDPNet. We extract four

datasets Cora, Citeseer, PubMed and DBLP followed by split-

ing them for training, test and validation with the supervised

learning scenario which follows the previous work [7], [9],

[10]. As for qualitative experiments, we conduct the embed-

ding visualization which projects the learned high-dimension

representations to a 2D space. In all these experiments, we

separate out test data from training and perform predictions

on nodes that are not seen during training.

A. Experimental Setup and Baselines

For all these tasks, we apply a two-layer policy network

to select the signal neighbors. The embedding dimension is

128. The size of the two hidden layers in policy network

are 64 and 36, respectively, with active function ReLU. The

batch size is 256. The discount factor is optimized as 0.95
for Cora and DBLP, 0.9 for PubMed and 1.0 for Citeseer.

We compare our method with the following baselines: (1)

Logistic regression (LR) model which takes the node features

as inputs, and ignores graph structure; (2) GCN [8] which

uses the local connection structure of the graph as the filter

to perform convolution. We use inductive version of GCN in

this paper for comparison; (3) GAT [10] which utilizes the

attention mechanism to enhance the performance of GCN;

(4) FastGCN [9]which samples the neighborhoods in each

layer independently to addresses the recursive expansion of

neighborhoods, and (5) GraphSAGE [7].

Our proposed model is denoted as GDPNet. We also

introduce a variant GDPNetRO which performs the signal

neighbor selection with a random order of the neighbors.

B. Performance Comparison

In this section, we first visualize the node representations

learned by different methods, followed by the performance

comparison on node classification task. Additionally, we show

the distributions of the selected signal neighbors with GDPNet

on different dataset.

1) Embedding Visualization: Node representations are

learned by GAT, GCN, GraphSAGE and GDPNet on test

dataset of Cora, and visualized with t-SNE [14], as shown

in Fig. 2. Different colors in the figure represent different

categories in Cora. The following observations can be made

from Fig. 2,

• GDPNet correctly detects the classes in Cora, providing

empirical evidence for the effectiveness of our method.

This can be seen by the clear gap between samples with

different colors. It also demonstrates that, removing the

noisy neighbors can help nodes learn better representa-

tions.

• GAT cannot effectively identify different classes as other

methods, it might because it considers all the neighbors

with attention weights, which is easily to introduce noisy

neighbors.

2) Results on Node Classification: In this part, we compare

the performance of GDPNet against the baselines on Cora,

Citeseer, PubMed and DBLP. For all methods, we run the

experiments with random seeds over 15 trials and record the

mean and standard variance of the micro-average F1 scores.

The results are summarized in Table I. From the table we

observe that,

• GDPNet consistently outperforms the other methods,

which demonstrates there exists a set of noisy neighbors

in each dataset on node classification task, and GDPNet

can learn robust embeddings by effectively removing

these noisy neighbors.

• GCN, FastGCN and GraphSAGE show lower F1 scores.

The reason is that these methods randomly sample a

subset of neighbors for representation learning, which is

hard to avoid the noisy neighbors. In addition, variance

is higher via random sampling.

• GAT learns the importance of the neighbors with attention

weights, which is also sensitive to noisy data according

to the reported results.

• Another interesting observation is that Logistic regression

achieves better performance than the other baselines on

PubMed, which indicates that there would be less signal

neighbors for the nodes in PubMed. This observation can

also be verified in Fig.3.

• GDPNetRO has a lower F1 score with higher variance

than GDPNet, which demonstrates that the order of the

decisions has an effect on the performance of representa-

tion learning. Thus learning an order for the neighbors is

beneficial for selecting signal neighbors and robust graph

representation learning.

3) Distribution of the Selected Neighbors: Fig. 3 shows

the distribution of the selected neighbor percentages, where

1381

(a) Cora-GDPNet (b) Cora-GAT (c) Cora-GCN (d) Cora-GraphSAGE

Fig. 2. Visualizations of the compared methods on Cora.

TABLE I
SUMMARY OF NODE CLASSIFICATION RESULTS IN TERMS OF MICRO-AVERAGED F1 SCORE, FOR CORA, CITESEER, PUBMED AND DBLP

Method LR GAT GCN FastGCN GraphSAGE GDPNetRO GDPNet

Cora 0.799± 1.06% 0.819± 0.45% 0.838± 0.50% 0.865± 4.50% 0.867± 1.05% 0.879± 2.14% 0.881± 0.31%
PubMed 0.871± 0.82% 0.778± 0.71% 0.826± 0.22% 0.867± 1.05% 0.854± 0.87% 0.880± 2.51% 0.893± 0.57%
DBLP 0.784± 1.03% 0.736± 0.82% 0.805± 2.17% 0.774± 0.41% 0.803± 1.28% 0.832± 0.97% 0.836± 0.57%

Citeseer 0.813± 0.58% 0.719± 0.50% 0.829± 1.56% 0.779± 0.53% 0.910± 0.73% 0.952± 1.15% 0.957± 0.33%

Fig. 3. The distribution of the selected signal neighbor percentages.

the x-axis indicates the percentage of the nodes been selected

as signal neighbors, and the y-axis indicates the probability

densities. We observe that most of the neighbors in Citeseer

and DBLP are selected while only a few neighbors are selected

in PubMed. The results show that there would be more “noisy”

citations (e.g. cross-field citation) in PubMed than in Citeseer

and DBLP. Interestingly, most of the research papers collected

in Citeseer and DBLP are from computer science, while

PubMed collects papers from biomedical.

4) Parameter Sensitivity Study: In Fig. 4, we vary the

training percentage of nodes in Citeseer and PubMed to test the

classification accuracy. We observe that, the performance of all

the methods are improved with the increases of the training

percentage. Additionally, it can be seen that GAT is very

sensitive to the percentages of training data, and it requires

larger proportion of training data in order to have a desirable

performance. GraphSAGE, GCN and GDPNet achieve good

performances on small training data, and GDPNet make more

improvements as the training data percentage increases.
5) Convergence Analysis: Fig. 5 shows the convergence

analysis of GDPNet on Citeseer and PubMed. We initialize the

policy randomly when epoch equals 0, and the neighbors are

randomly selected as signal neighbors. We observe that Cite-

seer converges faster than PubMed. One explanation would

be that PubMed has more nodes than Citeseer, which requires

more time to explore the policy for nodes.

IV. RELATED WORK

A. Graph Representation Learning
Graph representation learning tries to encode the graph

structure information into vector representations. The main

idea is to learn a mapping function from the nodes or entire

graphs into an embedding space where the geometric relation-

ships in the low-dimensional space coincide with the original

graph. The methods can be grouped into two categories: matrix

factorization based methods and graph neural network based

methods [1].
1) Graph Neural Network based Embedding: A set of

graph neural network based embedding methods are proposed

recently for representation learning [15]–[18]. GCN [8] first

proposes the first-order graph convolution layer to perform

recursive neighborhood aggregation based on the local connec-

tion. Instead of utilizing full graph Laplacian during training in

the GCN, GraphSAGE [7] considers the inductive setting to

handle the large scale graph with batch training and neigh-

borhood sampling. Followed by GraphSAGE, self-attention

mechanism has been explored to enhance the representation

learning performance [10], [19]. To accelerate the training of

GCNs, [9] samples the nodes in each layer independently,

while [20] samples the lower layer conditioned on the top one

and the sampled neighborhoods are shared by different parent

node. In this work, we propose to find an effective subset of

neighbors for learning robust representations.

1382

Fig. 4. Performance on different percentage of training data Fig. 5. Convergence analysis

B. Reinforcement Learning on Graph

Reinforcement learning solves the sequential decision mak-

ing problem with the goal of maximizing cumulative rewards

of these decisions. A set of work used reinforcement learning

to solve the sequential decision making problems in graph,

such as minimum vertex cover, maximum cut and travelling

salesman problem [21], [22]. You et al. [23] considered the

molecular graph generation process as a sequential decision

making process where the reward function is designed by

non-differentiable rules. Dai et al. [24] utilized reinforcement

learning to learn an attack policy to make multiple decisions

(delete or add edges in the graph) to attack the graph.

V. CONCLUSION

In this paper, we developed a novel framework, GDPNet,

to learn robust representations from noisy graph data through

reinforcement learning. GDPNet includes two phases: signal
neighbor selection and representation learning. It learns a

policy to sequentially select the signal neighbors for each

node, and then aggregates the information from the selected

neighbors to learn node representations for the down-stream

tasks. These two learning phases are complementary and

achieves significant improvement. Experiments on a set of

well-studied datasets provide empirical evidence for our ana-

lytical results, and yield significant gains in performance over

state-of-the-art baselines.

ACKNOWLEDGEMENTS

This work was partially supported by NSF DGE-1829071 and the
National Key Research and Development Program of China under
Grant No. 2016YFB1000904, NSFC (61702190, U1609220) and
Shanghai Chenguang Program (16CG24). We thank the anonymous
reviewers for their careful reading and insightful comments on our
manuscript.

REFERENCES

[1] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[2] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” TKDE,
vol. 30, no. 9, pp. 1616–1637, 2018.

[3] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Transactions on Knowledge and Data Engineering, 2018.

[4] W. Yu, C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong,
H. Chen, and W. Wang, “Learning deep network representations with
adversarially regularized autoencoders,” in KDD, pp. 2663–2671, ACM,
2018.

[5] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2008.

[6] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph
neural networks: A review of methods and applications,” arXiv preprint
arXiv:1812.08434, 2018.

[7] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, pp. 1024–1034, 2017.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[9] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[10] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[11] W. Liu and I. Tsang, “On the optimality of classifier chain for multi-label
classification,” in NeurIPS, pp. 712–720, 2015.

[12] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functionsi,” Mathematical
programming, vol. 14, no. 1, pp. 265–294, 1978.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[14] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[15] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in ICLR, 2015.

[16] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in NeurIPS, pp. 2224–2232, 2015.

[17] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[18] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in ICML, pp. 2014–2023, 2016.

[19] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated
attention networks for learning on large and spatiotemporal graphs,”
arXiv preprint arXiv:1803.07294, 2018.

[20] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards
fast graph representation learning,” in NeurIPS, pp. 4558–4567, 2018.

[21] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning com-
binatorial optimization algorithms over graphs,” in NeurIPS, pp. 6348–
6358, 2017.

[22] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in ICLR, 2017.

[23] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph convolu-
tional policy network for goal-directed molecular graph generation,” in
NeurIPS, pp. 6410–6421, 2018.

[24] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
“Adversarial attack on graph structured data,” in ICML, 2018.

1383

