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ABSTRACT 
Deep neural networks have achieved great success in sequential 
recommendation systems. While maintaining high competence in 
user modeling and next-item recommendation, these models have 
long been plagued by the numerous parameters and computation, 
which inhibit them to be deployed on resource-constrained mobile 
devices. Model quantization, as one of the main paradigms for com-
pression techniques, converts foat parameters to low-bit values to 
reduce parameter redundancy and accelerate inference. To avoid 
drastic performance degradation, it usually requests a fne-tuning 
phase with an original dataset. However, the training set of user-
item interactions is not always available due to transmission limits 
or privacy concerns. In this paper, we propose a novel framework 
to quantize sequential recommenders without access to any real pri-
vate data. A generator is employed in the framework to synthesize 
fake sequence samples to feed the quantized sequential recommen-
dation model and minimize the gap with a full-precision sequential 
recommendation model. The generator and the quantized model 
are optimized with a min-max game — alternating discrepancy es-
timation and knowledge transfer. Moreover, we devise a two-level 
discrepancy modeling strategy to transfer information between 
the quantized model and the full-precision model. The extensive 
experiments of various recommendation networks on three public 
datasets demonstrate the efectiveness of the proposed framework. 
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• Information systems → Recommender systems; Personaliza-
tion. 
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1 INTRODUCTION 
Deep learning-based recommender systems have fourished for 
their powerful capacity in learning users’ latent interests [46]. How-
ever, these large recommendation models inevitably require a lot 
of electrical and computing power to support their heavy com-
putations, which will bring a lot of carbon emissions [11]. And 
their ever-growing complexities and spaces inhibit the deployment 
on resource-constrained devices. Moreover, deep recommendation 
models are fueled by a vast amount of user behavior data. When 
providing personalized services to users, these giant recommender 
systems even require immediate contextual data and side infor-
mation for real-time inference, raising widespread concerns about 
personal privacy [15]. 

To tackle the problem of model redundancy, many methods have 
been applied [2, 34, 37, 41]. Model quantization, converting high-
precision parameters to low-precision ones, becomes one of the 
main paradigms in model compression and acceleration [4, 40, 43]. 
It aims to store parameters with fewer bits so that the computa-
tion can be executed on integer-arithmetic units rather than on 
power-hungry foating-point ones [13]. However, one important 
challenge for quantization-based methods is the drastic reduction 
of model performance. In order to address this challenge, a series of 
quantization-aware training approaches have been proposed [28]. 
The common pipeline is frst training a full-precision teacher model 
and then transferring the teacher’s knowledge to a quantized stu-
dent model using knowledge distillation (KD) [12]. 

Although these approaches have been proven efective in various 
recommendation scenarios, they always require full access to the 
training data of user behavior sequences. However, this kind of user 
data is not always available due to security concerns or transmission 
limits. In real situations, the user-item interactions in behavior 
sequences largely represent interests, tastes, even personalities, 
and are consequently important for personal privacy. Therefore, in 
the absence of user interactions and other contextual information 
(e.g., reviews, pictures) to assist in user modeling [22], the efect of 
model quantization is still far from satisfactory. 

Post-training quantization methods [6] therefore emerge to quan-
tize weights in DNNs and embedding tables through correction 
strategies, without training on the original data. However, there is 
a non-negligible gap between the strategies and the goals of target 
tasks, causing the quantized models to sufer from performance 
degradation. This issue is even amplifed in recommender systems 
with highly sparse user-item interactions. Another solution is di-
rectly using random noise as training sequences, but apparently 
random noise diverges from real user sequences in nature, espe-
cially when it comes to long-term user interests. 

To cope with these issues, we propose an adversarial learn-
ing framework that provides Private sequential Recommenders 
Quantization (PRecQ), i.e. quantizing sequential recommenders 
without private data. Particularly, a generator is introduced in the 

1043

https://doi.org/10.1145/3543507.3583351
https://doi.org/10.1145/3543507.3583351
mailto:permissions@acm.org
mailto:lingfengs111,frankliu624,wongjun,zhangwei.thu2011}@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583351&domain=pdf&date_stamp=2023-04-30


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Shi and Liu, et al. 

Network

Quantized 
Network

Generator

Network

Quantized 
Network

Quantized 
Network

Pre-training

Fine-tuning

Quantization

Figure 1: Overview of model quantization. Left: private data 
is available for model quantization. Right: private data is not 
accessible for model quantization. 

framework to generate user interaction sequences. We ensure the 
validity and the authenticity of synthesized data, by adopting dif-
ferent sampling strategies and gradient backpropagation tactics. 
Moreover, we devise a two-level discrepancy modeling method 
for PRecQ to measure the gap between a quantized model and its 
corresponding full-precision model. This method fuses not only the 
discrepancy from models’ output layers, but also a new embedding 
table discrepancy based on item similarity maps. Finally, the gener-
ator and quantized model are optimized together in an adversarial 
learning manner [5] to enable efective discrepancy estimation and 
knowledge transfer, as depicted in the right part of Figure 1. To 
sum up, our contributions are as follows: 
• We propose a novel framework to efectively quantize sequential 
recommenders without access to private data. A generator is 
introduced to synthesize realistic and diverse user interaction 
sequences, marking the frst attempt at data-free quantization in 
the feld of recommender systems. 

• A novel two-level discrepancy modeling strategy has been em-
ployed to measure the gap between a quantized model and its 
full-precision model, guiding the training of the quantized model 
and the generator at the same time. 

• Extensive experiments of various recommendation networks 
on three public datasets have been conducted, demonstrating 
the superiority of our proposed framework PRecQ, in terms of 
the validity of data generation and the efectiveness of model 
quantization. 

2 RELATED WORK 
      In this section, we review the relevant studies from sequential 

recommendation and model compression for recommendation. 

2.1 Sequential Recommendation 
Sequential recommendation requires handling user dynamic inter-
ests based on the user’s historical interactions, which conforms 
to many practical recommendation scenarios and thus has been 
extensively studied in the past decade. Early works mainly focus 
on modeling transition patterns between consecutive items using 
Markov chains (MCs) [29, 31]. However, the long-range dependen-
cies over the behavior sequences could not be well tackled in these 

methods. With the success of deep learning, deep sequential models 
have emerged as the mainstream approaches for sequential recom-
mendation [38]. GRU4Rec [10] and its improved version [9] are the 
pioneering recurrent neural network-based models in this regard. 
To empower the capability of comprehensively modeling the cor-
relations between diferent items in a user interaction sequence, 
attention-based mechanisms [36] are heavily utilized in sequential 
recommendation models, such as SASRec [19] and Bert4Rec [33]. 

Despite their performance improvements, the size and complex-
ity of these models also increase signifcantly. This makes it difcult 
for them to be deployed on resource-constrained devices such as 
smart mobile phones. Although some existing studies (introduced in 
the next part) have addressed the model efciency in recommender 
systems, few of them investigate this in the sequential recommen-
dation scenario. In this paper, we concentrate on compressing deep 
sequential recommendation models. 

2.2 Model Compression for Recommendation 
Model compression for recommendation models dates back to the 
early hashing-based methods [45, 47]. They usually represent users 
and items using binary representations. Although they are very ef-
fcient in both space storage and inference computation, the model 
expressive capacity is very limited and infexible, causing poor 
recommendation performance. Some recent studies investigate rec-
ommendation model compression from the aspect of pruning or 
dimension reduction [3, 7, 18, 24]. The techniques of automated 
machine learning and sparsity regularization are leveraged in these 
studies. However, the usage of high-precision real-valued embed-
dings constrains the memory compression ratios. 

Model quantization, which uses low-bit numbers instead of high-
precision foating-point values, could reduce a large recommen-
dation model to a much smaller one. Some studies [1, 17, 32] in 
this regard adopt the product quantization technique [16]. It de-
composes the full embedding table matrix into multiple codebooks 
and codewords. Nevertheless, the embeddings in the codebooks are 
still high-precision and the precomputation is hard to be realized 
for the sequential recommendation scenario. By contrast, general 
quantization techniques [21] could achieve both signifcant storage 
compression and high inference speed. 

To our knowledge, there are only a very few studies w.r.t.model 
compression for sequential recommendation [7, 23, 41]. Although 
these works have shown some promising results, they always as-
sume the existence of the training data for training the compressed 
models, which is usually not practical in real scenarios due to pri-
vacy concerns and transmission limits. In this paper, we focus 
on leveraging general quantization techniques to compress deep 
sequential recommendation models in a data-free manner [25], 
without accessing the training data. 

3 PRELIMINARIES 

3.1 Sequential Recommendation Task 
In this paper, we apply quantized recommendation models to the 
session-based scenario for next-item recommendation [39]. Let I 
= {�1, �2, �3, · · · , � | I | } denote an item set and �� = [��,1, ��,2, ��,3, · · · , 
��,� ] denotes a behavior sequence from an anonymous user �, where 
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Figure 2: Overview of PRecQ. Left: fow of sequence generation. Right: procedure of discrepancy modeling. 

� is the sequence length. Every behavior sequence is composed of in-
teracted items (i.e., ��,� ∈ I where 1 ≤ � ≤ � ) in chronological order. 
The task of sequential recommendation is to predict the next item, 
namely ��+1, for the current sequence. In this scenario, every item is 
frst mapped into the embedding space through an embedding table, 
which has a huge size and is denoted as � ∈ R | I |×� . Given I and 
�� , the output of sequential recommendation model is a probability 
distribution � = [�1 �2 �3 ... � | I | ], where �� corresponds to item � 
(1 ≤ � ≤ |� |). Normally, the top-N items with the largest probability 
values in � will be selected as recommendation results. 

3.2 Model Quantization 
We use symmetric linear quantization [43] as the quantization 
scheme for quantizing the weights in neural networks to integers 
with lower bits: 

�������� (� | �, �) := Clamp (⌊� × �⌉ , −�, �) , (1) 

Clamp(�, �1, �2) = min(max(�, �1), �2) , (2) 
where � denotes a full-precision (foat32) value and � is the highest 
value when performing �-bit quantization, which is expressed as 
follows: 

= 2� −1 − 1 .� (3) 
For example, when quantizing to 8 bits, � = 127. � is the quan-
tization scaling factor for input � , which can be calculated based 
on statistics during training or on some calibration datasets for 
post-training. Here, the weight scaling factor is calculated by: 

�� = 
� 

, (4)
��� ( |� � |) 

where � � is any one of foat32 numbers. 

4 PROPOSED METHOD 

4.1 Framework Overview 
Figure 2 gives the overview of the proposed framework PRecQ. 
As described in the left part, taking initial noise � as input, the 
generator outputs a series of probability distributions. Given se-
quences produced so far, the next items in the sequences could be 
decided based on these distributions. Then they are concatenated 
with the sequences to make them become longer. The above pro-
cess is repeated until the pre-set maximum length T is reached and 
consequently we get the full sequences. The right part contains pre-
trained full-precision model P, quantized model Q, and generator G. 
The sequences produced by G are used to compute the discrepancy 
between P and its quantized model Q. The discrepancy function is 
composed of ���� and ��� in the output level, and items similarity 
loss ���� in the intermediate level. As a result, the quantized model 
and the generator are optimized through a minimax game, where 
adversarial training is conducted. In what follows, we frst intro-
duce the rationale of sequence generation. Then we elaborate on 
PRecQ, including sampling strategies, discrepancy modeling, and 
knowledge transfer. 

4.2 Sequence Generation 
Since the training data is unavailable, the potential of the full-
precision model P, as the only source of the original data, should be 
fully exploited. Inspired by autoregressive language models where 
generated sentences are similar to a ‘real’ data distribution, and 
the fnding that sequential recommenders are often trained in an 
autoregressive manner [9, 19, 33], we directly use a copy of the 
full-precision model P as the initial Generator to synthesize user 
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behavior sequences autoregressively: 

��,�+1 = [��,1, ��,2, ..., ��,� , ��,� +1] 
= Concat(��,� , Model(��,� )) . 

(5) 

To start the generation of one behavior sequence, a randomly 
sampled item is regarded as the frst item in the sequence, i.e., ��,1. 
Afterwards, we feed it to a sequential recommendation model to 
have the probability distribution �. And the generation of the next 
item depends on �. This step can be repeated autoregressively to 
make the sequence longer until reaching the pre-set maximum 
length T . 

Once the generator is selected, the sampling strategy to deter-
mine the next item based on the distribution � becomes extremely 
important. This directly determines the quality and authenticity of 
the data generation. In what follows, we detail the strategies and 
the rationales behind them. 

4.3 Sampling Strategies 
4.3.1 Sampling strategy I. The simplest and most intuitive selection 
strategy is to choose the top-1 item with the maximum probability 
in the distribution � at each time step. This can be regarded as 
a greedy strategy. However, it easily leads to a high degree of 
similarity between the generated items in a sequence. A common 
paradigm of introducing randomness into this sampling strategy is 
the epsilon-greedy strategy: arg max with prob(1 − �) (�),

Next_item_index(�) = � (6)any item(�), with prob(�) , 

where � controls the magnitude of the introduced random variables. 
It represents purely a greedy algorithm strategy when � tends to 
be 0, and obtains purely random sequences when � tends to be 1. 

For ease of representation and subsequent introduction, we often 
digitize the item index identifcation from an integer to a one-hot 
encoding, which is given by: 

�̄ = ���_ℎ�� (Next_item_index (�)) . (7) 

The above sampling strategy has a certain efect. But one problem 
it encounters is that when choosing based on predicted probability 
values, only the item with the largest probability can be chosen, and 
when choosing based on random sampling, it can only be based 
on a discrete uniform distribution. Therefore, we introduce the 
Gumbel-Max trick [14] to fuse the above two choices: sampling 
according to the predicted probability distribution and introducing 
certain randomness at the same time. 

4.3.2 Sampling strategy II. The Gumbel-Max trick provides a sim-
ple and efcient way to draw samples from a categorical distribution 
with class probability distribution �: � � 

�̄ = ���_ℎ�� arg max [�� + log �� ] , (8) 
� 

where �� belongs to i.i.d samples drawn from Gumbel(0,1)1. Then 
we use the softmax function as a continuous and diferentiable 

1The Gumbel(0,1) distribution can be sampled by using inverse transform sampling, 
i.e., drawing � ∼ Uniform(0, 1) and computing � = −��� (−��� (� ) ) . 

approximation to argmax, which is named as Gumbel-Softmax dis-
tribution. Based on this, we generate k-dimensional sample vectors 
� = [�1 �2 �3 · · · �� ] ∈ R� as follows: 

exp ((log (�� ) + �� ) /�)
�� = � � � � � � , � ∈ {1, . . . , �} . (9)Í� 

=1 exp log � � + � � /� � 

where � corresponds to the � top-ranked items in the recommen-
dation candidate list, meaning that we only consider the frst � 
items given by the generator. Within this range, we apply the cal-
culation of the Gumbel-Max trick, and the rest of the items are not 
considered. The rationale behind this choice is due to the commonly 
known deviation of the exposure of items in the recommendation 
system, the model may be more confdent about the items with the 
highest prediction probabilities, compared to the items in the tail 
of the recommendation ranking list. 

The Gumbel-Softmax distribution is smooth when � > 0, and 
therefore has a well-defned gradient that can be computed. As such, 
by replacing epsilon-greedy samples with Gumbel-Softmax samples 
we can further use backpropagation to compute gradients. This 
procedure of replacing non-diferentiable sampling with a difer-
entiable approximation during training is called Gumbel-Softmax 
estimator. 

Based on the Gumbel-Softmax estimator, we can obtain the sam-
ple � as the output of G with parameters � and random noise �. This 
is represented as � = � (�, �). The path-wise gradients from quan-
tized model Q to � can therefore be computed without encountering 
any stochastic nodes as follows: � � 

� � �Q �G 
E� ∼�� [Q(�)] = E� [Q(G(�, �))] = E�∼�� , (10)

�� �� �G �� 

where �� refers to the distribution of G. In practice, we cut of the 
gradients between items in the same sequence, i.e. treating items in 
a single sequence as every independent prediction and computing 
their gradients respectively. 

4.4 Two-level Discrepancy Modeling 
As aforementioned, the framework PRecQ develops a novel two-
level discrepancy modeling approach to characterize the discrep-
ancy between full-precision and quantized models from the output 
level and the intermediate level. 

4.4.1 Discrepancy modeling of output level. To efectively model 
the discrepancy between P and Q, we utilize the binary cross en-
tropy (BCE) loss which is a commonly-used point-wise loss in 
sequential-based scenarios for next-item recommendation: 

T � 
L+ = − � �,� · log � �,� + 1 − � �,� · log 1 − � �,� , (11) 

∑ ∑ � � � � � 
��� 

� ∈G � =1 

where � �,� and � �,� are from the full-precision model P and the 
quantized model Q, respectively. They represent the results of the 
logits after sigmoid functions at the position � . It is worth mention-
ing that one of the two log terms above would be mathematically 
zero in conventional settings because the ground truth is either 
hard 1 or 0 in real user-item interactions. However, in our settings, 
��,� ∈ (0, 1), so we keep both log terms. G represents the data set 
produced by the generator G. � is the generated training sequence. 
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We view the sequences sampled from the generator as positive 
input sequences. In addition to these sequences, we also randomly 
sample some items which are aside from the positive ones. Then 
we have the following loss: ∑ ∑T  �

−  �
 � � � �  

L  = − �  · log �  + 1 − � · −��� �,� �,� �,�  log 1  � �,� . (12) 
� ∉G �=1

To further exploit the output information of the full-precision 
model P, we hope that the quantized model Q not only fts the 
full-precision model’s predictions of certain items, just as the BCE 
losses shown in Equation 11 and Equation 12, but also learns po-
sitional information from the top-K predicted items given by the 
full-precision model. Based on these considerations, we introduce 
a commonly-used ranking loss �� [35] in recommendation: ∑� 1 � � � � 

L�� (�1..� , �̂ ) = − · log Prob ��� = 1 | �̂
 �

� � 

�=1 (13)∑� 1 � � � � 
= − · log � �̂ ,

� �� 

�=1 

where �1...� is the top-K item list predicted by P, rather than the
top-K list given by G as described in Section 4.3.2. � is the sigmoid 
function and �̂�  represents the predicted score of the quantized
model at the

�

  �-th position. We use the simple weight 1/� to give 
penalties inversely proportional to the rank. In practice, we cal-
culate L�� every � items in a single behavior sequence � , where
� ≤ T . 

4.4.2 Discrepancy modeling of intermediate level. A conventional 
manner to measure the discrepancy of intermediate layers relies 
on correlating feature maps, just as what knowledge distillation 
(KD) commonly does [30, 44]. However, the numerical spans of 
P and Q are very diferent because of precision settings. As a re-
sult, the gap between feature maps in the two models is relatively 
large. Considering the fact that the parameters of the embedding 
table occupy most of the parameters of the entire recommenders, 
we take into account the similarity between stored items in the 
embedding tables, i.e., the similarity between items should remain 
unchanged after quantization. Therefore, we introduce a loss to 
calculate the similarity between items in the embedding tables of 
the full-precision and quantized models as follows: 

 



 2L𝑆𝑖𝑚 = 𝑹 ( 


𝑃 𝑛) − 𝑹 (𝑄 𝑛)
2 , (14)

where 𝑹𝑃 and 𝑹𝑄 are the similarity matrices of the full-precision
model and quantized model respectively. 𝑛 is an item list randomly
sampled from the whole item set. Here we use the L2 norm to
calculate the distance between the two models. Particularly, we
select the cosine similarity to compute the matrix 𝑹:

< 𝑾𝑖′ ,𝑾𝑖′′ >𝑹𝑖 𝑗 = , (15)∥𝑾𝑖′ ∥2 · ∥𝑾𝑖′′ ∥2
where 𝑾𝑖′ and 𝑾𝑖′′ represent the embeddings of the two items
𝑖′ and 𝑖′′ in the embedding table, and 𝑹𝑖 𝑗 represents their cosine
similarity score.

Table 1: Dataset statistics. 

Dataset User Item Pair Avglen Density 
Foursquare-TKY 2293 61857 573703 248.20 0.405% 
Amazon Beauty 52204 57289 394908 5.63 0.013% 

Steam 334730 13047 3686172 9.02 0.084% 

4.5 Adversarial Knowledge Transfer 
The proposed PRecQ framework trains the quantized model Q 
and the generator G in an adversarial minimax game, which con-
tains the discrepancy estimation and knowledge transfer stages. 
In the knowledge transfer stage, the quantized model Q is opti-
mized to minimize the two-level discrepancy to approximate the 
full-precision model P, which is defned as follows: 

= L+ 
��� + �L�� + � L��� , (16)L�� ��� + � L− 

where � , � , and � are the hyperparameters to balance diferent loss 
terms. 

In the discrepancy estimation stage, the generator G aims at 
maximizing the two-level discrepancy between Q and P to search for 
an efective discrepancy space, so as to generate more informative 
examples to guide the training of the quantized model Q. The loss 
is defned as follows: 

��� − � L− (17) 

As a consequence, the knowledge is transferred from P to Q 
progressively without any real private data. 

L�� = −L+ 
��� − �L�� . 

5 EXPERIMENTS 

5.1 Experimental Setup 
Datasets. We evaluate our approach on three public datasets:
• Amazon Beauty [27] is a dataset corresponding to the category
‘Beauty’, which is crawled from <Amazon.com> and contains
abundant user profles and behavior sequences.

• Steam [26] is a dataset collected from Steam, a large online
video game distribution platform. It consists of 334,730 users,
13,047 games, and 3,686,172 English reviews from October 2010
to January 2018.

• Foursquare-Tokyo [42] consists of check-ins collected in Tokyo
(marked as ‘TKY’) for about 10 months, which contains 2293 users,
61857 places, and 573,703 check-ins.
We follow the same preprocessing procedure as the previous

tudies [8, 19]. Particularly, we treat the presence of a rating as a 
type of implicit feedback and discard users and items with fewer 
than 5 related interactions. For the Foursquare dataset, we only use 
the most recent 50 implicit feedbacks of each user. We follow the 
study [19] to have the data partition. 

The data statistics are shown in Table 1. The ‘Avglen’ column 
refers to the average length of user interaction sequences. We can 
see that the Amazon Beauty dataset has the fewest interactions per 
user (on average) and is also the most sparse one. Steam has a larger 
average number of interactions per user and Foursquare-Tokyo is 
the densest dataset. 
Sequential recommendation models We consider the following
three deep sequential recommendation networks for validating the 
efectiveness of the proposed framework. 
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Table 2: Metric scores of the compared models on the three adopted datasets. 

Real data Post quant Noise Ours 

Dataset Model Full bits Ndcg@10 Hit@10 Ndcg@10 Hit@10 Ndcg@10 Hit@10 Ndcg@10 Hit@10 

GRU4Rec N:0.2252 
H:0.3996 

8 
4 

0.2200 
0.2179 

0.3901 
0.3870 

0.0434 
0.0419 

0.0981 
0.0933 

0.1990 
0.1983 

0.3597 
0.3555 

0.2168 
0.2128 

0.3874 
0.3830 

Beauty 

SASRec N:0.2338 
H:0.4104 

8 
4 
2 

0.2278 
0.2272 
0.2251 

0.4096 
0.3989 
0.3933 

0.0461 
0.0430 
0.0420 

0.1017 
0.0948 
0.0936 

0.2094 
0.2074 
0.2043 

0.3793 
0.3744 
0.3684 

0.2241 
0.2176 
0.2131 

0.4038 
0.3930 
0.3851 

SASRec N:0.5186 
H:0.7814 

6 
4 

0.5027 
0.4980 

0.7776 
0.7654 

0.0501 
0.0496 

0.1253 
0.1071 

0.3807 
0.3776 

0.7089 
0.7027 

0.4122 
0.4097 

0.7189 
0.7127 

Steam 

Bert4Rec N:0.4927 
H:0.7635 

8 
4 
2 

0.4850 
0.4762 
0.4689 

0.7567 
0.7498 
0.7322 

0.0500 
0.0472 
0.0425 

0.1078 
0.1023 
0.0985 

0.2298 
0.2237 
0.2098 

0.4555 
0.4455 
0.4048 

0.4179 
0.3844 
0.3324 

0.6522 
0.6458 
0.6373 

GRU4Rec N:0.5550 
H:0.7017 

6 
4 

0.5056 
0.4999 

0.6860 
0.6772 

0.0447 
0.0442 

0.0984 
0.0975 

0.3820 
0.3777 

0.6013 
0.5935 

0.4301 
0.4271 

0.6214 
0.6151 

TKY SASRec H:0.6057 
H:0.7348 

8 
2 

0.6001 
0.5893 

0.7331 
0.7248 

0.1398 
0.1307 

0.1901 
0.1762 

0.4249 
0.4092 

0.6171 
0.5927 

0.4444 
0.4284 

0.6441 
0.6380 

Bert4Rec N:0.6026 
H:0.7401 

4 
2 

0.3951 
0.3875 

0.6270 
0.6001 

0.1027 
0.0962 

0.1453 
0.1227 

0.3060 
0.2963 

0.5237 
0.5185 

0.3970 
0.3846 

0.5742 
0.5612 

• GRU4Rec [9]: A seminal method that uses RNNs to model user 
behavior sequences for session-based recommendation. We treat 
the feedback sequence of each user as a session. 

• SASRec [19]: SASRec consists of an embedding layer that in-
cludes both the item embedding and the positional embedding 
(timeline mask) of an input sequence, as well as a stack of one-
directional transformer (TRM) layers. Each transformer layer 
contains a multi-head self-attention module and a position-wise 
feed-forward network. 

• Bert4Rec [33] : Bert4Rec has an architecture similar to SAS-
Rec, but uses a bidirectional transformer and an auto-encoding 
(masked language modeling) task for training. It also includes 
item embedding and positional embedding. 

Implementation details. We implement all networks and quanti-
zation methods using Pytorch. Regarding to the network architec-
tures, we use two self-attention blocks with one head for SASRec 
and Bert4Rec. For GRU4Rec, we use one GRUCell only. We set the 
dimension to 128 for embedding layers and hidden layers of all mod-
els. For the time information, we directly use the timeline matrix to 
mask unrelated items, except for Bert4Rec, on which we use a posi-
tional embedding to add on item embeddings. Adam [20] is adopted 
as the optimizer and the learning rates of quantized models and gen-
erators are initialized to 1 × 10−4 and 1 × 10−5, respectively. We use 
multi-step learning rates on most tasks. The dropout rate of turning-
of neurons is set to 0.2 for Foursquare-TKY and 0.1 for the other 
two datasets due to their sparsity. The maximum sequence length 
of �� for all users is set to 50 for Foursquare-TKY, 25 for Beauty, 
and 20 for Steam. More detailed implementations are illustrated in 
the following parts. To facilitate relevant studies, the code of the 
proposed PRecQ is available at https://github.com/Sinp17/PRecQ. 

In our framework, the generator G and the full-precision model 
P have the same model structure, and the generator directly copies 
the parameters from P as initialization. As for the sampling strategy, 

we only sample the frst top-K items, and these items contribute to 
the gradient back-propagation. � is chosen from {2000,5000,10000} 
or full item length. During training, we cut of the gradient between 
items in the same sequence. One choice of gradient computation 
is to fx the embedding table of the generator to maintain orig-
inality from the full-precision model’s parameters. The detailed 
comparison can be found in the component ablation study later. 
Evaluation metrics. To evaluate the attribute-based recommen-
dation performance, we use two standard ranking metrics, i.e., 
Normalized Discounted Cumulative Gain at rank N (Ndcg@N) and 
Hit Rate (Hit@N). Specifcally, we set Hit@10 and Ndcg@10 in 
most tests. Hit@5 and Ndcg@1 are added to the ablation study. All 
the reported results are averaged. 

In the testing stage, to avoid heavy computation on all user-item 
pairs, we follow the strategy [19]. For each user u, we randomly 
sample 100 negative items and rank these items with the ground-
truth item. Based on the rankings of these total 101 items, Hit@10 
and Ndcg@10 can be evaluated. 

5.2 Overview of Method Performance 
In order to give a comprehensive view of the experimental results, 
we select two sequential recommendation models on the Amazon 
Beauty and Steam datasets and all the three models on Foursquare-
TKY to conduct our experiments. For each model, we select several 
important bits for showing the results, which are shown in Table 2. 
‘Post quant’ refers to the method of directly quantizing the teacher 
model without fne-tuning. And ‘noise’ means training on random 
item sequences, where items are sampled based on discrete uniform 
distribution. Note that the ‘Full’ column shows the performance in 
terms of Ndcg@10 and Hit@10 of the full-precision models. 

To begin with, we can fnd that our method has improvements of 
about 1.5% ∼ 8% of Hit@10 and 4% ∼ 13% of Ndcg@10 on SASRec 
and GRU4Rec compared to the noise training. On average, we can 
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(a) GRU4Rec on steam (b) Bert4Rec on TKY 

Figure 3: Performance change versus diferent quantization 
precisions in terms of the metric Hit@10. 

achieve 92.8% of Hit@10 and 87.3% of Ndcg@10 of the training 
performance on the real data sets. 

Furthermore, we fnd that the post-quantization method behaves 
poorly on the three datasets. This is probably because the process 
of quantization can severely disrupt the stored structure of the 
parameters in the embedding layer and other layers. Moreover, the 
efect of training with random sequences is surprisingly good. We 
speculate reasons accounting for this: (1) In the real sequence of 
user behavior, the short-term user sequence or the most recent 
interaction has a very large impact on the fnal decision, while the 
noise may be closer to the real data situation in terms of recon-
structing the short-term sequences. (2) The efect of knowledge 
distillation is signifcant, and it can pass on the confdence of the 
full-precision model to the next click prediction to the quantized 
model, so the teacher model can give a reasonable explanation of 
most kinds of input sequences. 

In addition, we also fnd that the results of Bert4Rec using our 
framework are much better than training on noise, compared with 
the results of SASRec and GRU4Rec. This is probably because, in 
practice, we choose to use the timeline matrix to mask items for 
SASRec and GRU4Rec, but for Bert4Rec, due to bidirectional mod-
eling, we leverage a positional embedding and add it on token 
embeddings, and the representation of positional embedding can 
also be quantized. This makes Bert4Rec appear more sensitive to the 
authenticity of the sequence, resulting in a signifcant improvement 
of Bert4Rec with our method compared to training on noise. 

5.3 Quantization Performance of Diferent Bits 
To better illustrate how performance changes with diferent bits, 
we present two line charts, as shown in Figure 3. The curves of 
diferent quantization methods in the fgures refect that PRecQ 
is consistently better in the ultra-low precision situation. Particu-
larly, in the range from 8 bits to 4 bits, shown in Figure 3(b), the 
descent efect of the three methods is not very obvious. However, 
when it comes to 2 bits or lower, shown in Figure 3(a), the decline 
is relatively signifcant. In this case, our method could achieve a 
relatively lower rate of decline compared to noise training. 

5.4 Ablation Study 
Component ablation. In our framework, the performance using 
diferent training data sources is shown in Figure 4. Apart from real 
sequences and noise sequences, the other fve methods all introduce 

(a) Ndcg on TKY of 4-bit GRU4Rec (b) Hit rates on TKY of 4-bit GRU4Rec 

(c) Ndcg on Steam of 6-bit Bert4Rec (d) Hit rates on Steam of 6-bit Bert4Rec 

Figure 4: Performance change with diferent data sources. 

generators to produce training data. The diference is that these 
fve methods employ diferent sampling strategies and gradient 
calculation schemes. All the generators copy the parameters of 
the corresponding full-precision model as initialization, while the 
quantized model is initialized randomly. 

Particularly, ‘greedy’ refers to the epsilon-greedy strategy intro-
duced in Section 4.3.1 with � chosen from {0.1, 0.2, 0.3}. ‘gumbel’ 
is the Gumbel-Max trick in Section 4.3.2 with � chosen from {1, 
1/16, 1/64}. The latter three methods are with gradient computa-
tion and backpropagation based on the Gumbel-Max trick. Among 
them, considering that there might be a certain gap between the 
capacity of the generator and the quantized model when initial-
ization [48], we devise a two-stage training method (‘grad_2sg’ in 
the fgure), where we adopt the Gumbel-Softmax estimator with-
out gradients (same as gumbel in the Figure) until the quantized 
model fts properly, then the generator and the quantized model 
are trained together based on a minimax game. While ‘Grad_1sg’ 
refers to the method where we directly train the generator and 
the quantized model together after initialization. ‘Grad_1sgf’ is 
similar to ‘Grad_1sg’, except for fxing the embedding layer of the 
generator after initialization, so as to maintain the originality of 
full-precision embedding parameters. 

From Figure 4, we can see that the overall performance of meth-
ods with gradient backpropagation is better than the ones without 
gradients. For GRU4Rec on TKY, the methods with gradients are 1-2 
points (percent) higher on Hit scores and about 1.5 points higher 
on Ndcg scores than those without gradients, while for Bert4Rec 
on Steam, there are 1-2 points higher on the Hit metric and about 
1-3 points on the Ndcg metric. In the methods of not calculating 
the gradients, greedy and Gumbel strategies behave similarly on 
both metrics. In the methods of calculating gradients, one-stage 
training is more efective in generator training, and therefore the 
performance is better than two-stage training. The efect of fxed 
embedding depends on models and datasets. 
Loss ablation. To ensure the efectiveness of knowledge transfer, 
we design multiple losses. For the loss ���� , we treat the samples 
produced by the generator as positive samples, and samples that 
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Table 3: Ablation study of diferent losses. 

Method 
full-SASRec 

N@10 H@10 

4-bit GRU4Rec 

N@10 H@10 

Ours 0.4616 0.6497 0.4151 0.7353 
w/o Sim 
w/o RD 

w/o Sim & RD 

0.4587 
0.4273 
0.4191 

0.6245 
0.6354 
0.6201 

0.3966 
0.4132 
0.3870 

0.7122 
0.7266 
0.7044 

are in the itemset I but not in positive samples as negative samples. 
For the loss L��� , we randomly select a list of items with the size 
of � from the item set and calculate the similarity matrix between 
them. In practice, we set �=2000 for TKY and Steam and �=1000 
for Amazon Beauty. For the ranking loss L�� in Equation 13, we 
set �1...100 for all datasets, � = 3 for TKY and Steam, and � = 5 for 
Amazon Beauty. For hyperparameters in Equation 16 and 17, the 
default setting is � = 1, � = 1, � = 1 for GRU4Rec and � = 1, � = 
0.25, � = 1 for SASRec and Bert4Rec. Small adjustments might be 
made depending on datasets. 

To further investigate the efectiveness of diferent loss terms, we 
devise the ablation study shown in Table 3. We consider quantized 
models in two scenarios, full-precision SASRec on Foursquare TKY 
and 4-bit GRU4Rec on Steam, and choose two metrics to conduct 
the experiments. By comparing the scores in the frst scenario of 
TKY dataset, we can see that ranking loss contributes to the Ndcg 
scores more, while the similarity loss helps Hit rate more. Whereas 
in the sparse dataset Steam, the beneft of the similarity loss is more 
signifcant than the ranking loss, making it an indispensable part 
of the proposed framework. 

5.5 Case Study 
5.5.1 Generated sequence visualization. To demonstrate the efec-
tiveness of data generation, we conduct an experiment to calculate 
the item frequency ratios appearing in diferent data sources and 
sampling strategies. As illustrated in Figure 5, the x-axis represents 
the item frequency number in log form, whereas the y-axis rep-
resents its ratio in each data source. Particularly, we select 6000 
user sequences and consider the frequency number from 1 to 150 
for Foursquare-TKY. We can see that the purple line representing 
grad_1sg is closer to the real data set in terms of the frequency 
of spawning items. There are both sparse items and more densely 
distributed items in the real dataset. In contrast, the greedy method 
is more inclined to produce high-frequency items. The frequency 
of the noisy items difers the most from the real data situation. 

5.5.2 Embedding visualization. Given those embedding parameters 
accounting for the vast majority of parameters in the sequential 
recommendation models, we choose to visualize the embedding 
table before and after quantization. The embedding table is chosen 
from 4bit-SASRec on Foursquare-TKY and we use Google’s open-
source visualization tool ‘Embedding Projector’2 for presentation. 
Figure 6 is visualized using Principal Component Analysis (PCA) 
based dimension reduction. The three dimensions with the greatest 
infuence are selected as the ��� axes. 

2http://projector.tensorfow.org/ 

Figure 5: Data distributions for diferent sampling strategies. 

(a) Full-precision embedding (b) Quantized embedding 

Figure 6: Visualization of embedding space. 

In Figure 6(a), we can see that full-precision embeddings points 
converge to the left and right parts of the fgure. Considering the 
popularity properties of diferent items in real situations, high-
exposure items should be learned better than low-exposure ones, 
leading to a bipolar trend in the embedding visualization fgure. 
Afected by model quantization, the embedding image of the quan-
tized model is diferent from that of the full-precision model, as is 
shown in Figure 6(b). It is more like a sphere in general. Whereas 
the points in the right fgure also demonstrate a tendency to con-
centrate on the left and right poles. We attribute this to the high 
quality of our synthesized data, as is shown in Figure 5, and the 
efectiveness of knowledge distillation. 

6 CONCLUSION 
In this paper, we propose a novel framework to efectively quan-
tize sequential recommenders without the requirement of original 
training data. Our contributions lie in employing a generator to 
synthesize high-quality user behavior sequences, by adopting dif-
ferent sampling strategies and gradient backpropagation tactics. 
Our framework is also favorable for the efectiveness of modeling 
the discrepancy between full-precision and quantized models from 
the intermediate embedding level and the output level. By jointly 
optimizing the generator and the quantized model, extensive exper-
iments on various deep neural models demonstrate the superiority 
of PRecQ. In future work, we might consider applying the proposed 
method to mixed precision quantization. 
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Table 6: Quantization settings comparison. 

Method Real Post quant Noise ours 
log 0.475/0.767 0.043/0.094 0.372/0.703 0.411/0.729 

min-max 0.479/0.775 0.043/0.096 0.389/0.711 0.415/0.735 

APPENDIX 

A RUNNING COST ANALYSIS 
The linear quantization method used in PRecQ could achieve a 4 to 
16 compression rate of model size or memory bandwidth, and speed 
up the sequential recommendation model 1x to 4x depending on 
hardware. We test the inference latency of 8-bit-GRU4Rec on the 
Beauty and TKY datasets using Intel CPU E5-2680 and the results 
are shown in Table 4. 

Table 4: Running cost comparison. 

Dataset mode Size Latency 

Beauty 
FP32 
Qint8 

59.28MB 
14.82MB 

9.32ms 
5.49ms 

TKY 
FP32 
Qint8 

64MB 
16MB 

21.13ms 
10.62ms 

B COMPRESSION METHOD COMPARISION 
Diferent compression techniques vary in nature, making it hard 
to be compared. Here we take the tensor-train decomposition 
(TTD) [41] method as an example. Given SASRec tested on the 

Shi and Liu, et al. 

Beauty dataset, the original embedding size is (57289 × 128) and 
could be compressed to two TT-cores of (59 × 971) + (16 × 8), with 
TT-rank of 60. As shown in Table 5, though having a better compres-
sion rate, the performance of the TTD method is slightly worse than 
the linear quantization method of the 4-bit model on NDCG@10 
and HR@10. Moreover, due to complex lookup mechanisms, the 
overall CPU time of the TTD method is much longer than that of 
linear quantization in the inference stage. For a fair comparison, 
no cache-related optimization is implemented and latency is tested 
within each batch, where the batch size is 40 and the sequence 
length is 25. 

Table 5: Compression method comparison. 

Method Ndcg@10 Hit@10 comp-rate Latency 

TTD 0.2201 0.3877 120.6x 583ms 
Linear Quant 0.2272 0.3989 8x 11.2ms 

More importantly, our PRecQ is a general quantization frame-
work that can be combined with other compression techniques, thus 
the comparison of diferent compression techniques (e.g. weight-
decomposition, pruning) is not the key of this work. 

C QUANTIZATION SETTINGS 
Our framework is robust to diferent quantization settings. In this 
part, we conduct experiments with another non-uniform quantiza-
tion setting, i.e. log. The performance of 4-bit-GRU4Rec on Steam 
(NDCG@10/Hit@10) is shown in Table 6. 
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