
Qantize Sequential Recommenders Without Private Data
Lingfeng Shi, Yuang Liu, Jun Wang, Wei Zhang∗

School of Computer Science and Technology, East China Normal University
{lingfengs111,frankliu624,wongjun,zhangwei.thu2011}@gmail.com

ABSTRACT
Deep neural networks have achieved great success in sequential
recommendation systems. While maintaining high competence in
user modeling and next-item recommendation, these models have
long been plagued by the numerous parameters and computation,
which inhibit them to be deployed on resource-constrained mobile
devices. Model quantization, as one of the main paradigms for com-
pression techniques, converts foat parameters to low-bit values to
reduce parameter redundancy and accelerate inference. To avoid
drastic performance degradation, it usually requests a fne-tuning
phase with an original dataset. However, the training set of user-
item interactions is not always available due to transmission limits
or privacy concerns. In this paper, we propose a novel framework
to quantize sequential recommenders without access to any real pri-
vate data. A generator is employed in the framework to synthesize
fake sequence samples to feed the quantized sequential recommen-
dation model and minimize the gap with a full-precision sequential
recommendation model. The generator and the quantized model
are optimized with a min-max game — alternating discrepancy es-
timation and knowledge transfer. Moreover, we devise a two-level
discrepancy modeling strategy to transfer information between
the quantized model and the full-precision model. The extensive
experiments of various recommendation networks on three public
datasets demonstrate the efectiveness of the proposed framework.

CCS CONCEPTS
• Information systems → Recommender systems; Personaliza-
tion.

KEYWORDS
Sequential Recommenders, Data-free Quantization, Model Com-
pression

ACM Reference Format:
Lingfeng Shi, Yuang Liu, Jun Wang, Wei Zhang. 2023. Quantize Sequential
Recommenders Without Private Data. In Proceedings of the ACM Web Con-
ference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3543507.3583351

∗Corresponding author. The work was supported in part by NSFC (No. 62072182 and
92270119), Shanghai Institute for AI Education, KLATASDS-MOE, and the special
fund of short-term training and international conference for graduate students of East
China Normal University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583351

1 INTRODUCTION
Deep learning-based recommender systems have fourished for
their powerful capacity in learning users’ latent interests [46]. How-
ever, these large recommendation models inevitably require a lot
of electrical and computing power to support their heavy com-
putations, which will bring a lot of carbon emissions [11]. And
their ever-growing complexities and spaces inhibit the deployment
on resource-constrained devices. Moreover, deep recommendation
models are fueled by a vast amount of user behavior data. When
providing personalized services to users, these giant recommender
systems even require immediate contextual data and side infor-
mation for real-time inference, raising widespread concerns about
personal privacy [15].

To tackle the problem of model redundancy, many methods have
been applied [2, 34, 37, 41]. Model quantization, converting high-
precision parameters to low-precision ones, becomes one of the
main paradigms in model compression and acceleration [4, 40, 43].
It aims to store parameters with fewer bits so that the computa-
tion can be executed on integer-arithmetic units rather than on
power-hungry foating-point ones [13]. However, one important
challenge for quantization-based methods is the drastic reduction
of model performance. In order to address this challenge, a series of
quantization-aware training approaches have been proposed [28].
The common pipeline is frst training a full-precision teacher model
and then transferring the teacher’s knowledge to a quantized stu-
dent model using knowledge distillation (KD) [12].

Although these approaches have been proven efective in various
recommendation scenarios, they always require full access to the
training data of user behavior sequences. However, this kind of user
data is not always available due to security concerns or transmission
limits. In real situations, the user-item interactions in behavior
sequences largely represent interests, tastes, even personalities,
and are consequently important for personal privacy. Therefore, in
the absence of user interactions and other contextual information
(e.g., reviews, pictures) to assist in user modeling [22], the efect of
model quantization is still far from satisfactory.

Post-training quantization methods [6] therefore emerge to quan-
tize weights in DNNs and embedding tables through correction
strategies, without training on the original data. However, there is
a non-negligible gap between the strategies and the goals of target
tasks, causing the quantized models to sufer from performance
degradation. This issue is even amplifed in recommender systems
with highly sparse user-item interactions. Another solution is di-
rectly using random noise as training sequences, but apparently
random noise diverges from real user sequences in nature, espe-
cially when it comes to long-term user interests.

To cope with these issues, we propose an adversarial learn-
ing framework that provides Private sequential Recommenders
Quantization (PRecQ), i.e. quantizing sequential recommenders
without private data. Particularly, a generator is introduced in the

1043

https://doi.org/10.1145/3543507.3583351
https://doi.org/10.1145/3543507.3583351
mailto:permissions@acm.org
mailto:lingfengs111,frankliu624,wongjun,zhangwei.thu2011}@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583351&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Shi and Liu, et al.

Network

Quantized
Network

Generator

Network

Quantized
Network

Quantized
Network

Pre-training

Fine-tuning

Quantization

Figure 1: Overview of model quantization. Left: private data
is available for model quantization. Right: private data is not
accessible for model quantization.

framework to generate user interaction sequences. We ensure the
validity and the authenticity of synthesized data, by adopting dif-
ferent sampling strategies and gradient backpropagation tactics.
Moreover, we devise a two-level discrepancy modeling method
for PRecQ to measure the gap between a quantized model and its
corresponding full-precision model. This method fuses not only the
discrepancy from models’ output layers, but also a new embedding
table discrepancy based on item similarity maps. Finally, the gener-
ator and quantized model are optimized together in an adversarial
learning manner [5] to enable efective discrepancy estimation and
knowledge transfer, as depicted in the right part of Figure 1. To
sum up, our contributions are as follows:
• We propose a novel framework to efectively quantize sequential
recommenders without access to private data. A generator is
introduced to synthesize realistic and diverse user interaction
sequences, marking the frst attempt at data-free quantization in
the feld of recommender systems.

• A novel two-level discrepancy modeling strategy has been em-
ployed to measure the gap between a quantized model and its
full-precision model, guiding the training of the quantized model
and the generator at the same time.

• Extensive experiments of various recommendation networks
on three public datasets have been conducted, demonstrating
the superiority of our proposed framework PRecQ, in terms of
the validity of data generation and the efectiveness of model
quantization.

2 RELATED WORK
 In this section, we review the relevant studies from sequential

recommendation and model compression for recommendation.

2.1 Sequential Recommendation
Sequential recommendation requires handling user dynamic inter-
ests based on the user’s historical interactions, which conforms
to many practical recommendation scenarios and thus has been
extensively studied in the past decade. Early works mainly focus
on modeling transition patterns between consecutive items using
Markov chains (MCs) [29, 31]. However, the long-range dependen-
cies over the behavior sequences could not be well tackled in these

methods. With the success of deep learning, deep sequential models
have emerged as the mainstream approaches for sequential recom-
mendation [38]. GRU4Rec [10] and its improved version [9] are the
pioneering recurrent neural network-based models in this regard.
To empower the capability of comprehensively modeling the cor-
relations between diferent items in a user interaction sequence,
attention-based mechanisms [36] are heavily utilized in sequential
recommendation models, such as SASRec [19] and Bert4Rec [33].

Despite their performance improvements, the size and complex-
ity of these models also increase signifcantly. This makes it difcult
for them to be deployed on resource-constrained devices such as
smart mobile phones. Although some existing studies (introduced in
the next part) have addressed the model efciency in recommender
systems, few of them investigate this in the sequential recommen-
dation scenario. In this paper, we concentrate on compressing deep
sequential recommendation models.

2.2 Model Compression for Recommendation
Model compression for recommendation models dates back to the
early hashing-based methods [45, 47]. They usually represent users
and items using binary representations. Although they are very ef-
fcient in both space storage and inference computation, the model
expressive capacity is very limited and infexible, causing poor
recommendation performance. Some recent studies investigate rec-
ommendation model compression from the aspect of pruning or
dimension reduction [3, 7, 18, 24]. The techniques of automated
machine learning and sparsity regularization are leveraged in these
studies. However, the usage of high-precision real-valued embed-
dings constrains the memory compression ratios.

Model quantization, which uses low-bit numbers instead of high-
precision foating-point values, could reduce a large recommen-
dation model to a much smaller one. Some studies [1, 17, 32] in
this regard adopt the product quantization technique [16]. It de-
composes the full embedding table matrix into multiple codebooks
and codewords. Nevertheless, the embeddings in the codebooks are
still high-precision and the precomputation is hard to be realized
for the sequential recommendation scenario. By contrast, general
quantization techniques [21] could achieve both signifcant storage
compression and high inference speed.

To our knowledge, there are only a very few studies w.r.t.model
compression for sequential recommendation [7, 23, 41]. Although
these works have shown some promising results, they always as-
sume the existence of the training data for training the compressed
models, which is usually not practical in real scenarios due to pri-
vacy concerns and transmission limits. In this paper, we focus
on leveraging general quantization techniques to compress deep
sequential recommendation models in a data-free manner [25],
without accessing the training data.

3 PRELIMINARIES

3.1 Sequential Recommendation Task
In this paper, we apply quantized recommendation models to the
session-based scenario for next-item recommendation [39]. Let I
= {�1, �2, �3, · · · , � | I | } denote an item set and �� = [��,1, ��,2, ��,3, · · · ,
��,�] denotes a behavior sequence from an anonymous user �, where

1044

Qantize Sequential Recommenders Without Private Data WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Prob
Distribution

Concat

Batch

Length

Full Sequence
Several Iterations

em
bedding

output

em
bedding

output

n

encoder

encoder

encoder

encoder

Full-precision model (P)

Quantized model (Q)

Forward
Backward

Parameters copy
Auto-regression

Generator
Prob
Distribution

Sampling

Sampling

Generator

Generator

Concat

Figure 2: Overview of PRecQ. Left: fow of sequence generation. Right: procedure of discrepancy modeling.

� is the sequence length. Every behavior sequence is composed of in-
teracted items (i.e., ��,� ∈ I where 1 ≤ � ≤ �) in chronological order.
The task of sequential recommendation is to predict the next item,
namely ��+1, for the current sequence. In this scenario, every item is
frst mapped into the embedding space through an embedding table,
which has a huge size and is denoted as � ∈ R | I |×� . Given I and
�� , the output of sequential recommendation model is a probability
distribution � = [�1 �2 �3 ... � | I |], where �� corresponds to item �
(1 ≤ � ≤ |� |). Normally, the top-N items with the largest probability
values in � will be selected as recommendation results.

3.2 Model Quantization
We use symmetric linear quantization [43] as the quantization
scheme for quantizing the weights in neural networks to integers
with lower bits:

�������� (� | �, �) := Clamp (⌊� × �⌉ , −�, �) , (1)

Clamp(�, �1, �2) = min(max(�, �1), �2) , (2)
where � denotes a full-precision (foat32) value and � is the highest
value when performing �-bit quantization, which is expressed as
follows:

= 2� −1 − 1 .� (3)
For example, when quantizing to 8 bits, � = 127. � is the quan-
tization scaling factor for input � , which can be calculated based
on statistics during training or on some calibration datasets for
post-training. Here, the weight scaling factor is calculated by:

�� =
�

, (4)
��� (|� � |)

where � � is any one of foat32 numbers.

4 PROPOSED METHOD

4.1 Framework Overview
Figure 2 gives the overview of the proposed framework PRecQ.
As described in the left part, taking initial noise � as input, the
generator outputs a series of probability distributions. Given se-
quences produced so far, the next items in the sequences could be
decided based on these distributions. Then they are concatenated
with the sequences to make them become longer. The above pro-
cess is repeated until the pre-set maximum length T is reached and
consequently we get the full sequences. The right part contains pre-
trained full-precision model P, quantized model Q, and generator G.
The sequences produced by G are used to compute the discrepancy
between P and its quantized model Q. The discrepancy function is
composed of ���� and ��� in the output level, and items similarity
loss ���� in the intermediate level. As a result, the quantized model
and the generator are optimized through a minimax game, where
adversarial training is conducted. In what follows, we frst intro-
duce the rationale of sequence generation. Then we elaborate on
PRecQ, including sampling strategies, discrepancy modeling, and
knowledge transfer.

4.2 Sequence Generation
Since the training data is unavailable, the potential of the full-
precision model P, as the only source of the original data, should be
fully exploited. Inspired by autoregressive language models where
generated sentences are similar to a ‘real’ data distribution, and
the fnding that sequential recommenders are often trained in an
autoregressive manner [9, 19, 33], we directly use a copy of the
full-precision model P as the initial Generator to synthesize user

1045



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Shi and Liu, et al.

behavior sequences autoregressively:

��,�+1 = [��,1, ��,2, ..., ��,� , ��,� +1]
= Concat(��,� , Model(��,�)) .

(5)

To start the generation of one behavior sequence, a randomly
sampled item is regarded as the frst item in the sequence, i.e., ��,1.
Afterwards, we feed it to a sequential recommendation model to
have the probability distribution �. And the generation of the next
item depends on �. This step can be repeated autoregressively to
make the sequence longer until reaching the pre-set maximum
length T .

Once the generator is selected, the sampling strategy to deter-
mine the next item based on the distribution � becomes extremely
important. This directly determines the quality and authenticity of
the data generation. In what follows, we detail the strategies and
the rationales behind them.

4.3 Sampling Strategies
4.3.1 Sampling strategy I. The simplest and most intuitive selection
strategy is to choose the top-1 item with the maximum probability
in the distribution � at each time step. This can be regarded as
a greedy strategy. However, it easily leads to a high degree of
similarity between the generated items in a sequence. A common
paradigm of introducing randomness into this sampling strategy is
the epsilon-greedy strategy: arg max with prob(1 − �) (�),

Next_item_index(�) = � (6)any item(�), with prob(�) ,

where � controls the magnitude of the introduced random variables.
It represents purely a greedy algorithm strategy when � tends to
be 0, and obtains purely random sequences when � tends to be 1.

For ease of representation and subsequent introduction, we often
digitize the item index identifcation from an integer to a one-hot
encoding, which is given by:

�̄ = ���_ℎ�� (Next_item_index (�)) . (7)

The above sampling strategy has a certain efect. But one problem
it encounters is that when choosing based on predicted probability
values, only the item with the largest probability can be chosen, and
when choosing based on random sampling, it can only be based
on a discrete uniform distribution. Therefore, we introduce the
Gumbel-Max trick [14] to fuse the above two choices: sampling
according to the predicted probability distribution and introducing
certain randomness at the same time.

4.3.2 Sampling strategy II. The Gumbel-Max trick provides a sim-
ple and efcient way to draw samples from a categorical distribution
with class probability distribution �: � �

�̄ = ���_ℎ�� arg max [�� + log ��] , (8)
�

where �� belongs to i.i.d samples drawn from Gumbel(0,1)1. Then
we use the softmax function as a continuous and diferentiable

1The Gumbel(0,1) distribution can be sampled by using inverse transform sampling,
i.e., drawing � ∼ Uniform(0, 1) and computing � = −��� (−��� (�)) .

approximation to argmax, which is named as Gumbel-Softmax dis-
tribution. Based on this, we generate k-dimensional sample vectors
� = [�1 �2 �3 · · · ��] ∈ R� as follows:

exp ((log (��) + ��) /�)
�� = � � � � � � , � ∈ {1, . . . , �} . (9)Í�

=1 exp log � � + � � /� �

where � corresponds to the � top-ranked items in the recommen-
dation candidate list, meaning that we only consider the frst �
items given by the generator. Within this range, we apply the cal-
culation of the Gumbel-Max trick, and the rest of the items are not
considered. The rationale behind this choice is due to the commonly
known deviation of the exposure of items in the recommendation
system, the model may be more confdent about the items with the
highest prediction probabilities, compared to the items in the tail
of the recommendation ranking list.

The Gumbel-Softmax distribution is smooth when � > 0, and
therefore has a well-defned gradient that can be computed. As such,
by replacing epsilon-greedy samples with Gumbel-Softmax samples
we can further use backpropagation to compute gradients. This
procedure of replacing non-diferentiable sampling with a difer-
entiable approximation during training is called Gumbel-Softmax
estimator.

Based on the Gumbel-Softmax estimator, we can obtain the sam-
ple � as the output of G with parameters � and random noise �. This
is represented as � = � (�, �). The path-wise gradients from quan-
tized model Q to � can therefore be computed without encountering
any stochastic nodes as follows: � �

� � �Q �G
E� ∼�� [Q(�)] = E� [Q(G(�, �))] = E�∼�� , (10)

�� �� �G ��

where �� refers to the distribution of G. In practice, we cut of the
gradients between items in the same sequence, i.e. treating items in
a single sequence as every independent prediction and computing
their gradients respectively.

4.4 Two-level Discrepancy Modeling
As aforementioned, the framework PRecQ develops a novel two-
level discrepancy modeling approach to characterize the discrep-
ancy between full-precision and quantized models from the output
level and the intermediate level.

4.4.1 Discrepancy modeling of output level. To efectively model
the discrepancy between P and Q, we utilize the binary cross en-
tropy (BCE) loss which is a commonly-used point-wise loss in
sequential-based scenarios for next-item recommendation:

T �
L+ = − � �,� · log � �,� + 1 − � �,� · log 1 − � �,� , (11)

∑ ∑ � � � � �
���

� ∈G � =1

where � �,� and � �,� are from the full-precision model P and the
quantized model Q, respectively. They represent the results of the
logits after sigmoid functions at the position � . It is worth mention-
ing that one of the two log terms above would be mathematically
zero in conventional settings because the ground truth is either
hard 1 or 0 in real user-item interactions. However, in our settings,
��,� ∈ (0, 1), so we keep both log terms. G represents the data set
produced by the generator G. � is the generated training sequence.

1046

Qantize Sequential Recommenders Without Private Data WWW ’23, April 30–May 04, 2023, Austin, TX, USA

We view the sequences sampled from the generator as positive
input sequences. In addition to these sequences, we also randomly
sample some items which are aside from the positive ones. Then
we have the following loss: ∑ ∑T �

− �
 � � � �

L = − � · log � + 1 − � · −��� �,� �,� �,� log 1 � �,� . (12)
� ∉G �=1

To further exploit the output information of the full-precision
model P, we hope that the quantized model Q not only fts the
full-precision model’s predictions of certain items, just as the BCE
losses shown in Equation 11 and Equation 12, but also learns po-
sitional information from the top-K predicted items given by the
full-precision model. Based on these considerations, we introduce
a commonly-used ranking loss �� [35] in recommendation: ∑� 1 � � � �

L�� (�1..� , �̂) = − · log Prob ��� = 1 | �̂
 �

� �

�=1 (13)∑� 1 � � � �
= − · log � �̂ ,

� ��

�=1

where �1...� is the top-K item list predicted by P, rather than the
top-K list given by G as described in Section 4.3.2. � is the sigmoid
function and �̂� represents the predicted score of the quantized
model at the

�

 �-th position. We use the simple weight 1/� to give
penalties inversely proportional to the rank. In practice, we cal-
culate L�� every � items in a single behavior sequence � , where
� ≤ T .

4.4.2 Discrepancy modeling of intermediate level. A conventional
manner to measure the discrepancy of intermediate layers relies
on correlating feature maps, just as what knowledge distillation
(KD) commonly does [30, 44]. However, the numerical spans of
P and Q are very diferent because of precision settings. As a re-
sult, the gap between feature maps in the two models is relatively
large. Considering the fact that the parameters of the embedding
table occupy most of the parameters of the entire recommenders,
we take into account the similarity between stored items in the
embedding tables, i.e., the similarity between items should remain
unchanged after quantization. Therefore, we introduce a loss to
calculate the similarity between items in the embedding tables of
the full-precision and quantized models as follows:

 2L𝑆𝑖𝑚 = 𝑹 (

𝑃 𝑛) − 𝑹 (𝑄 𝑛)
2 , (14)

where 𝑹𝑃 and 𝑹𝑄 are the similarity matrices of the full-precision
model and quantized model respectively. 𝑛 is an item list randomly
sampled from the whole item set. Here we use the L2 norm to
calculate the distance between the two models. Particularly, we
select the cosine similarity to compute the matrix 𝑹:

< 𝑾𝑖′ ,𝑾𝑖′′ >𝑹𝑖 𝑗 = , (15)∥𝑾𝑖′ ∥2 · ∥𝑾𝑖′′ ∥2
where 𝑾𝑖′ and 𝑾𝑖′′ represent the embeddings of the two items
𝑖′ and 𝑖′′ in the embedding table, and 𝑹𝑖 𝑗 represents their cosine
similarity score.

Table 1: Dataset statistics.

Dataset User Item Pair Avglen Density
Foursquare-TKY 2293 61857 573703 248.20 0.405%
Amazon Beauty 52204 57289 394908 5.63 0.013%

Steam 334730 13047 3686172 9.02 0.084%

4.5 Adversarial Knowledge Transfer
The proposed PRecQ framework trains the quantized model Q
and the generator G in an adversarial minimax game, which con-
tains the discrepancy estimation and knowledge transfer stages.
In the knowledge transfer stage, the quantized model Q is opti-
mized to minimize the two-level discrepancy to approximate the
full-precision model P, which is defned as follows:

= L+
��� + �L�� + � L��� , (16)L�� ��� + � L−

where � , � , and � are the hyperparameters to balance diferent loss
terms.

In the discrepancy estimation stage, the generator G aims at
maximizing the two-level discrepancy between Q and P to search for
an efective discrepancy space, so as to generate more informative
examples to guide the training of the quantized model Q. The loss
is defned as follows:

��� − � L− (17)

As a consequence, the knowledge is transferred from P to Q
progressively without any real private data.

L�� = −L+
��� − �L�� .

5 EXPERIMENTS

5.1 Experimental Setup
Datasets. We evaluate our approach on three public datasets:
• Amazon Beauty [27] is a dataset corresponding to the category
‘Beauty’, which is crawled from <Amazon.com> and contains
abundant user profles and behavior sequences.

• Steam [26] is a dataset collected from Steam, a large online
video game distribution platform. It consists of 334,730 users,
13,047 games, and 3,686,172 English reviews from October 2010
to January 2018.

• Foursquare-Tokyo [42] consists of check-ins collected in Tokyo
(marked as ‘TKY’) for about 10 months, which contains 2293 users,
61857 places, and 573,703 check-ins.
We follow the same preprocessing procedure as the previous

tudies [8, 19]. Particularly, we treat the presence of a rating as a
type of implicit feedback and discard users and items with fewer
than 5 related interactions. For the Foursquare dataset, we only use
the most recent 50 implicit feedbacks of each user. We follow the
study [19] to have the data partition.

The data statistics are shown in Table 1. The ‘Avglen’ column
refers to the average length of user interaction sequences. We can
see that the Amazon Beauty dataset has the fewest interactions per
user (on average) and is also the most sparse one. Steam has a larger
average number of interactions per user and Foursquare-Tokyo is
the densest dataset.
Sequential recommendation models We consider the following
three deep sequential recommendation networks for validating the
efectiveness of the proposed framework.

1047

https://Amazon.com

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Shi and Liu, et al.

Table 2: Metric scores of the compared models on the three adopted datasets.

Real data Post quant Noise Ours

Dataset Model Full bits Ndcg@10 Hit@10 Ndcg@10 Hit@10 Ndcg@10 Hit@10 Ndcg@10 Hit@10

GRU4Rec N:0.2252
H:0.3996

8
4

0.2200
0.2179

0.3901
0.3870

0.0434
0.0419

0.0981
0.0933

0.1990
0.1983

0.3597
0.3555

0.2168
0.2128

0.3874
0.3830

Beauty

SASRec N:0.2338
H:0.4104

8
4
2

0.2278
0.2272
0.2251

0.4096
0.3989
0.3933

0.0461
0.0430
0.0420

0.1017
0.0948
0.0936

0.2094
0.2074
0.2043

0.3793
0.3744
0.3684

0.2241
0.2176
0.2131

0.4038
0.3930
0.3851

SASRec N:0.5186
H:0.7814

6
4

0.5027
0.4980

0.7776
0.7654

0.0501
0.0496

0.1253
0.1071

0.3807
0.3776

0.7089
0.7027

0.4122
0.4097

0.7189
0.7127

Steam

Bert4Rec N:0.4927
H:0.7635

8
4
2

0.4850
0.4762
0.4689

0.7567
0.7498
0.7322

0.0500
0.0472
0.0425

0.1078
0.1023
0.0985

0.2298
0.2237
0.2098

0.4555
0.4455
0.4048

0.4179
0.3844
0.3324

0.6522
0.6458
0.6373

GRU4Rec N:0.5550
H:0.7017

6
4

0.5056
0.4999

0.6860
0.6772

0.0447
0.0442

0.0984
0.0975

0.3820
0.3777

0.6013
0.5935

0.4301
0.4271

0.6214
0.6151

TKY SASRec H:0.6057
H:0.7348

8
2

0.6001
0.5893

0.7331
0.7248

0.1398
0.1307

0.1901
0.1762

0.4249
0.4092

0.6171
0.5927

0.4444
0.4284

0.6441
0.6380

Bert4Rec N:0.6026
H:0.7401

4
2

0.3951
0.3875

0.6270
0.6001

0.1027
0.0962

0.1453
0.1227

0.3060
0.2963

0.5237
0.5185

0.3970
0.3846

0.5742
0.5612

• GRU4Rec [9]: A seminal method that uses RNNs to model user
behavior sequences for session-based recommendation. We treat
the feedback sequence of each user as a session.

• SASRec [19]: SASRec consists of an embedding layer that in-
cludes both the item embedding and the positional embedding
(timeline mask) of an input sequence, as well as a stack of one-
directional transformer (TRM) layers. Each transformer layer
contains a multi-head self-attention module and a position-wise
feed-forward network.

• Bert4Rec [33] : Bert4Rec has an architecture similar to SAS-
Rec, but uses a bidirectional transformer and an auto-encoding
(masked language modeling) task for training. It also includes
item embedding and positional embedding.

Implementation details. We implement all networks and quanti-
zation methods using Pytorch. Regarding to the network architec-
tures, we use two self-attention blocks with one head for SASRec
and Bert4Rec. For GRU4Rec, we use one GRUCell only. We set the
dimension to 128 for embedding layers and hidden layers of all mod-
els. For the time information, we directly use the timeline matrix to
mask unrelated items, except for Bert4Rec, on which we use a posi-
tional embedding to add on item embeddings. Adam [20] is adopted
as the optimizer and the learning rates of quantized models and gen-
erators are initialized to 1 × 10−4 and 1 × 10−5, respectively. We use
multi-step learning rates on most tasks. The dropout rate of turning-
of neurons is set to 0.2 for Foursquare-TKY and 0.1 for the other
two datasets due to their sparsity. The maximum sequence length
of �� for all users is set to 50 for Foursquare-TKY, 25 for Beauty,
and 20 for Steam. More detailed implementations are illustrated in
the following parts. To facilitate relevant studies, the code of the
proposed PRecQ is available at https://github.com/Sinp17/PRecQ.

In our framework, the generator G and the full-precision model
P have the same model structure, and the generator directly copies
the parameters from P as initialization. As for the sampling strategy,

we only sample the frst top-K items, and these items contribute to
the gradient back-propagation. � is chosen from {2000,5000,10000}
or full item length. During training, we cut of the gradient between
items in the same sequence. One choice of gradient computation
is to fx the embedding table of the generator to maintain orig-
inality from the full-precision model’s parameters. The detailed
comparison can be found in the component ablation study later.
Evaluation metrics. To evaluate the attribute-based recommen-
dation performance, we use two standard ranking metrics, i.e.,
Normalized Discounted Cumulative Gain at rank N (Ndcg@N) and
Hit Rate (Hit@N). Specifcally, we set Hit@10 and Ndcg@10 in
most tests. Hit@5 and Ndcg@1 are added to the ablation study. All
the reported results are averaged.

In the testing stage, to avoid heavy computation on all user-item
pairs, we follow the strategy [19]. For each user u, we randomly
sample 100 negative items and rank these items with the ground-
truth item. Based on the rankings of these total 101 items, Hit@10
and Ndcg@10 can be evaluated.

5.2 Overview of Method Performance
In order to give a comprehensive view of the experimental results,
we select two sequential recommendation models on the Amazon
Beauty and Steam datasets and all the three models on Foursquare-
TKY to conduct our experiments. For each model, we select several
important bits for showing the results, which are shown in Table 2.
‘Post quant’ refers to the method of directly quantizing the teacher
model without fne-tuning. And ‘noise’ means training on random
item sequences, where items are sampled based on discrete uniform
distribution. Note that the ‘Full’ column shows the performance in
terms of Ndcg@10 and Hit@10 of the full-precision models.

To begin with, we can fnd that our method has improvements of
about 1.5% ∼ 8% of Hit@10 and 4% ∼ 13% of Ndcg@10 on SASRec
and GRU4Rec compared to the noise training. On average, we can

1048

https://github.com/Sinp17/PRecQ

Qantize Sequential Recommenders Without Private Data WWW ’23, April 30–May 04, 2023, Austin, TX, USA

(a) GRU4Rec on steam (b) Bert4Rec on TKY

Figure 3: Performance change versus diferent quantization
precisions in terms of the metric Hit@10.

achieve 92.8% of Hit@10 and 87.3% of Ndcg@10 of the training
performance on the real data sets.

Furthermore, we fnd that the post-quantization method behaves
poorly on the three datasets. This is probably because the process
of quantization can severely disrupt the stored structure of the
parameters in the embedding layer and other layers. Moreover, the
efect of training with random sequences is surprisingly good. We
speculate reasons accounting for this: (1) In the real sequence of
user behavior, the short-term user sequence or the most recent
interaction has a very large impact on the fnal decision, while the
noise may be closer to the real data situation in terms of recon-
structing the short-term sequences. (2) The efect of knowledge
distillation is signifcant, and it can pass on the confdence of the
full-precision model to the next click prediction to the quantized
model, so the teacher model can give a reasonable explanation of
most kinds of input sequences.

In addition, we also fnd that the results of Bert4Rec using our
framework are much better than training on noise, compared with
the results of SASRec and GRU4Rec. This is probably because, in
practice, we choose to use the timeline matrix to mask items for
SASRec and GRU4Rec, but for Bert4Rec, due to bidirectional mod-
eling, we leverage a positional embedding and add it on token
embeddings, and the representation of positional embedding can
also be quantized. This makes Bert4Rec appear more sensitive to the
authenticity of the sequence, resulting in a signifcant improvement
of Bert4Rec with our method compared to training on noise.

5.3 Quantization Performance of Diferent Bits
To better illustrate how performance changes with diferent bits,
we present two line charts, as shown in Figure 3. The curves of
diferent quantization methods in the fgures refect that PRecQ
is consistently better in the ultra-low precision situation. Particu-
larly, in the range from 8 bits to 4 bits, shown in Figure 3(b), the
descent efect of the three methods is not very obvious. However,
when it comes to 2 bits or lower, shown in Figure 3(a), the decline
is relatively signifcant. In this case, our method could achieve a
relatively lower rate of decline compared to noise training.

5.4 Ablation Study
Component ablation. In our framework, the performance using
diferent training data sources is shown in Figure 4. Apart from real
sequences and noise sequences, the other fve methods all introduce

(a) Ndcg on TKY of 4-bit GRU4Rec (b) Hit rates on TKY of 4-bit GRU4Rec

(c) Ndcg on Steam of 6-bit Bert4Rec (d) Hit rates on Steam of 6-bit Bert4Rec

Figure 4: Performance change with diferent data sources.

generators to produce training data. The diference is that these
fve methods employ diferent sampling strategies and gradient
calculation schemes. All the generators copy the parameters of
the corresponding full-precision model as initialization, while the
quantized model is initialized randomly.

Particularly, ‘greedy’ refers to the epsilon-greedy strategy intro-
duced in Section 4.3.1 with � chosen from {0.1, 0.2, 0.3}. ‘gumbel’
is the Gumbel-Max trick in Section 4.3.2 with � chosen from {1,
1/16, 1/64}. The latter three methods are with gradient computa-
tion and backpropagation based on the Gumbel-Max trick. Among
them, considering that there might be a certain gap between the
capacity of the generator and the quantized model when initial-
ization [48], we devise a two-stage training method (‘grad_2sg’ in
the fgure), where we adopt the Gumbel-Softmax estimator with-
out gradients (same as gumbel in the Figure) until the quantized
model fts properly, then the generator and the quantized model
are trained together based on a minimax game. While ‘Grad_1sg’
refers to the method where we directly train the generator and
the quantized model together after initialization. ‘Grad_1sgf’ is
similar to ‘Grad_1sg’, except for fxing the embedding layer of the
generator after initialization, so as to maintain the originality of
full-precision embedding parameters.

From Figure 4, we can see that the overall performance of meth-
ods with gradient backpropagation is better than the ones without
gradients. For GRU4Rec on TKY, the methods with gradients are 1-2
points (percent) higher on Hit scores and about 1.5 points higher
on Ndcg scores than those without gradients, while for Bert4Rec
on Steam, there are 1-2 points higher on the Hit metric and about
1-3 points on the Ndcg metric. In the methods of not calculating
the gradients, greedy and Gumbel strategies behave similarly on
both metrics. In the methods of calculating gradients, one-stage
training is more efective in generator training, and therefore the
performance is better than two-stage training. The efect of fxed
embedding depends on models and datasets.
Loss ablation. To ensure the efectiveness of knowledge transfer,
we design multiple losses. For the loss ���� , we treat the samples
produced by the generator as positive samples, and samples that

1049

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Shi and Liu, et al.

Table 3: Ablation study of diferent losses.

Method
full-SASRec

N@10 H@10

4-bit GRU4Rec

N@10 H@10

Ours 0.4616 0.6497 0.4151 0.7353
w/o Sim
w/o RD

w/o Sim & RD

0.4587
0.4273
0.4191

0.6245
0.6354
0.6201

0.3966
0.4132
0.3870

0.7122
0.7266
0.7044

are in the itemset I but not in positive samples as negative samples.
For the loss L��� , we randomly select a list of items with the size
of � from the item set and calculate the similarity matrix between
them. In practice, we set �=2000 for TKY and Steam and �=1000
for Amazon Beauty. For the ranking loss L�� in Equation 13, we
set �1...100 for all datasets, � = 3 for TKY and Steam, and � = 5 for
Amazon Beauty. For hyperparameters in Equation 16 and 17, the
default setting is � = 1, � = 1, � = 1 for GRU4Rec and � = 1, � =
0.25, � = 1 for SASRec and Bert4Rec. Small adjustments might be
made depending on datasets.

To further investigate the efectiveness of diferent loss terms, we
devise the ablation study shown in Table 3. We consider quantized
models in two scenarios, full-precision SASRec on Foursquare TKY
and 4-bit GRU4Rec on Steam, and choose two metrics to conduct
the experiments. By comparing the scores in the frst scenario of
TKY dataset, we can see that ranking loss contributes to the Ndcg
scores more, while the similarity loss helps Hit rate more. Whereas
in the sparse dataset Steam, the beneft of the similarity loss is more
signifcant than the ranking loss, making it an indispensable part
of the proposed framework.

5.5 Case Study
5.5.1 Generated sequence visualization. To demonstrate the efec-
tiveness of data generation, we conduct an experiment to calculate
the item frequency ratios appearing in diferent data sources and
sampling strategies. As illustrated in Figure 5, the x-axis represents
the item frequency number in log form, whereas the y-axis rep-
resents its ratio in each data source. Particularly, we select 6000
user sequences and consider the frequency number from 1 to 150
for Foursquare-TKY. We can see that the purple line representing
grad_1sg is closer to the real data set in terms of the frequency
of spawning items. There are both sparse items and more densely
distributed items in the real dataset. In contrast, the greedy method
is more inclined to produce high-frequency items. The frequency
of the noisy items difers the most from the real data situation.

5.5.2 Embedding visualization. Given those embedding parameters
accounting for the vast majority of parameters in the sequential
recommendation models, we choose to visualize the embedding
table before and after quantization. The embedding table is chosen
from 4bit-SASRec on Foursquare-TKY and we use Google’s open-
source visualization tool ‘Embedding Projector’2 for presentation.
Figure 6 is visualized using Principal Component Analysis (PCA)
based dimension reduction. The three dimensions with the greatest
infuence are selected as the ��� axes.

2http://projector.tensorfow.org/

Figure 5: Data distributions for diferent sampling strategies.

(a) Full-precision embedding (b) Quantized embedding

Figure 6: Visualization of embedding space.

In Figure 6(a), we can see that full-precision embeddings points
converge to the left and right parts of the fgure. Considering the
popularity properties of diferent items in real situations, high-
exposure items should be learned better than low-exposure ones,
leading to a bipolar trend in the embedding visualization fgure.
Afected by model quantization, the embedding image of the quan-
tized model is diferent from that of the full-precision model, as is
shown in Figure 6(b). It is more like a sphere in general. Whereas
the points in the right fgure also demonstrate a tendency to con-
centrate on the left and right poles. We attribute this to the high
quality of our synthesized data, as is shown in Figure 5, and the
efectiveness of knowledge distillation.

6 CONCLUSION
In this paper, we propose a novel framework to efectively quan-
tize sequential recommenders without the requirement of original
training data. Our contributions lie in employing a generator to
synthesize high-quality user behavior sequences, by adopting dif-
ferent sampling strategies and gradient backpropagation tactics.
Our framework is also favorable for the efectiveness of modeling
the discrepancy between full-precision and quantized models from
the intermediate embedding level and the output level. By jointly
optimizing the generator and the quantized model, extensive exper-
iments on various deep neural models demonstrate the superiority
of PRecQ. In future work, we might consider applying the proposed
method to mixed precision quantization.

1050

http://projector.tensorflow.org/

Qantize Sequential Recommenders Without Private Data WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] Jin Chen, Defu Lian, Binbin Jin, Xu Huang, Kai Zheng, and Enhong Chen. 2022.

Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative Filter-
ing. In WWW. 1944–1954.

[2] Tong Chen, Hongzhi Yin, Yujia Zheng, Zi Huang, Yang Wang, and Meng Wang.
2021. Learning elastic embeddings for customizing on-device recommenders. In
KDD. 138–147.

[3] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang Lin.
2021. DeepLight: Deep lightweight feature interactions for accelerating CTR
predictions in ad serving. In WSDM. 922–930.

[4] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. 2014. Compress-
ing deep convolutional networks using vector quantization. arXiv preprint
arXiv:1412.6115 (2014).

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139–144.

[6] Hui Guan, Andrey Malevich, Jiyan Yang, Jongsoo Park, and Hector Yuen.
2019. Post-training 4-bit quantization on embedding tables. arXiv preprint
arXiv:1911.02079 (2019).

[7] Jialiang Han, Yun Ma, Qiaozhu Mei, and Xuanzhe Liu. 2021. DeepRec: On-device
Deep Learning for Privacy-Preserving Sequential Recommendation in Mobile
Commerce. In WWW. 900–911.

[8] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In ICDM. 191–200.

[9] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks
with top-k gains for session-based recommendations. In CIKM. 843–852.

[10] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[11] Yassine Himeur, Abdullah Alsalemi, Ayman Al-Kababji, Faycal Bensaali, Abbes
Amira, Christos Sardianos, George Dimitrakopoulos, and Iraklis Varlamis. 2021.
A survey of recommender systems for energy efciency in buildings: Principles,
challenges and prospects. Information Fusion 72 (2021), 1–21.

[12] Geofrey Hinton, Oriol Vinyals, Jef Dean, et al. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 2, 7 (2015).

[13] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efcient integer-arithmetic-only inference. In
CVPR. 2704–2713.

[14] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[15] Arjan JP Jeckmans, Michael Beye, Zekeriya Erkin, Pieter Hartel, Reginald L
Lagendijk, and Qiang Tang. 2013. Privacy in recommender systems. In Social
Media Retrieval. Springer, 263–281.

[16] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[17] Gangwei Jiang, Hao Wang, Jin Chen, Haoyu Wang, Defu Lian, and Enhong Chen.
2021. xLightFM: Extremely Memory-Efcient Factorization Machine. In SIGIR.
337–346.

[18] Manas R Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V Le. 2020. Neural input search for large
scale recommendation models. In KDD. 2387–2397.

[19] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In ICDM. IEEE, 197–206.

[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[21] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein.
2017. Training quantized nets: A deeper understanding. Advances in Neural
Information Processing Systems 30 (2017).

[22] Jingjing Li, Mengmeng Jing, Ke Lu, Lei Zhu, Yang Yang, and Zi Huang. 2019. From
zero-shot learning to cold-start recommendation. In AAAI, Vol. 33. 4189–4196.

[23] Yang Li, Tong Chen, Peng-Fei Zhang, and Hongzhi Yin. 2021. Lightweight self-
attentive sequential recommendation. In CIKM. 967–977.

[24] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. 2021. Learnable
embedding sizes for recommender systems. arXiv preprint arXiv:2101.07577

(2021).
[25] Yuang Liu, Wei Zhang, Jun Wang, and Jianyong Wang. 2021. Data-free knowledge

transfer: A survey. arXiv preprint arXiv:2112.15278 (2021).
[26] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

2015. Image-based recommendations on styles and substitutes. In SIGIR. 43–52.
[27] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations

using distantly-labeled reviews and fne-grained aspects. In EMNLP-IJCNLP.
188–197.

[28] Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression
via distillation and quantization. arXiv preprint arXiv:1802.05668 (2018).

[29] Stefen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. In WWW.
811–820.

[30] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. 2014. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550 (2014).

[31] Guy Shani, David Heckerman, Ronen I Brafman, and Craig Boutilier. 2005. An
MDP-based recommender system. JMLR 6, 9 (2005).

[32] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. 2020.
Compositional embeddings using complementary partitions for memory-efcient
recommendation systems. In KDD. 165–175.

[33] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder repre-
sentations from transformer. In CIKM. 1441–1450.

[34] Yang Sun, Fajie Yuan, Min Yang, Guoao Wei, Zhou Zhao, and Duo Liu. 2020. A
generic network compression framework for sequential recommender systems.
In SIGIR. 1299–1308.

[35] Jiaxi Tang and Ke Wang. 2018. Ranking distillation: Learning compact ranking
models with high performance for recommender system. In KDD. 2289–2298.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, Vol. 30.

[37] Qinyong Wang, Hongzhi Yin, Tong Chen, Zi Huang, Hao Wang, Yanchang Zhao,
and Nguyen Quoc Viet Hung. 2020. Next point-of-interest recommendation on
resource-constrained mobile devices. In WWW. 906–916.

[38] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z Sheng, Mehmet A Orgun, and
Defu Lian. 2021. A survey on session-based recommender systems. Comput.
Surveys 54, 7 (2021), 1–38.

[39] Wen Wang, Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan
Zha. 2020. Beyond Clicks: Modeling Multi-Relational Item Graph for Session-
Based Target Behavior Prediction. In WWW. 3056–3062.

[40] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016.
Quantized convolutional neural networks for mobile devices. In CVPR. 4820–
4828.

[41] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Guandong Xu, and Quoc
Viet Hung Nguyen. 2022. On-Device Next-Item Recommendation with Self-
Supervised Knowledge Distillation. In SIGIR. 546–555.

[42] Dingqi Yang, Daqing Zhang, Vincent. W. Zheng, and Zhiyong Yu. 2015. Modeling
User Activity Preference by Leveraging User Spatial Temporal Characteristics in
LBSNs. TSMC 45, 1 (2015), 129–142.

[43] Ofr Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019. Q8bert:
Quantized 8bit bert. In EMC2-NeurIPS. IEEE, 36–39.

[44] Sergey Zagoruyko and Nikos Komodakis. 2016. Paying more attention to atten-
tion: Improving the performance of convolutional neural networks via attention
transfer. arXiv preprint arXiv:1612.03928 (2016).

[45] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-Seng
Chua. 2016. Discrete collaborative fltering. In SIGIR. 325–334.

[46] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recom-
mender system: A survey and new perspectives. Comput. Surveys 52, 1 (2019),
1–38.

[47] Yan Zhang, Hongzhi Yin, Zi Huang, Xingzhong Du, Guowu Yang, and Defu Lian.
2018. Discrete deep learning for fast content-aware recommendation. In WSDM.
717–726.

[48] Yichen Zhu and Yi Wang. 2021. Student customized knowledge distillation:
Bridging the gap between student and teacher. In ICCV. 5057–5066.

1051

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 6: Quantization settings comparison.

Method Real Post quant Noise ours
log 0.475/0.767 0.043/0.094 0.372/0.703 0.411/0.729

min-max 0.479/0.775 0.043/0.096 0.389/0.711 0.415/0.735

APPENDIX

A RUNNING COST ANALYSIS
The linear quantization method used in PRecQ could achieve a 4 to
16 compression rate of model size or memory bandwidth, and speed
up the sequential recommendation model 1x to 4x depending on
hardware. We test the inference latency of 8-bit-GRU4Rec on the
Beauty and TKY datasets using Intel CPU E5-2680 and the results
are shown in Table 4.

Table 4: Running cost comparison.

Dataset mode Size Latency

Beauty
FP32
Qint8

59.28MB
14.82MB

9.32ms
5.49ms

TKY
FP32
Qint8

64MB
16MB

21.13ms
10.62ms

B COMPRESSION METHOD COMPARISION
Diferent compression techniques vary in nature, making it hard
to be compared. Here we take the tensor-train decomposition
(TTD) [41] method as an example. Given SASRec tested on the

Shi and Liu, et al.

Beauty dataset, the original embedding size is (57289 × 128) and
could be compressed to two TT-cores of (59 × 971) + (16 × 8), with
TT-rank of 60. As shown in Table 5, though having a better compres-
sion rate, the performance of the TTD method is slightly worse than
the linear quantization method of the 4-bit model on NDCG@10
and HR@10. Moreover, due to complex lookup mechanisms, the
overall CPU time of the TTD method is much longer than that of
linear quantization in the inference stage. For a fair comparison,
no cache-related optimization is implemented and latency is tested
within each batch, where the batch size is 40 and the sequence
length is 25.

Table 5: Compression method comparison.

Method Ndcg@10 Hit@10 comp-rate Latency

TTD 0.2201 0.3877 120.6x 583ms
Linear Quant 0.2272 0.3989 8x 11.2ms

More importantly, our PRecQ is a general quantization frame-
work that can be combined with other compression techniques, thus
the comparison of diferent compression techniques (e.g. weight-
decomposition, pruning) is not the key of this work.

C QUANTIZATION SETTINGS
Our framework is robust to diferent quantization settings. In this
part, we conduct experiments with another non-uniform quantiza-
tion setting, i.e. log. The performance of 4-bit-GRU4Rec on Steam
(NDCG@10/Hit@10) is shown in Table 6.

1052

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Model Compression for Recommendation

	3 PRELIMINARIES
	3.1 Sequential Recommendation Task
	3.2 Model Quantization

	4 Proposed Method
	4.1 Framework Overview
	4.2 Sequence Generation
	4.3 Sampling Strategies
	4.4 Two-level Discrepancy Modeling
	4.5 Adversarial Knowledge Transfer

	5 Experiments
	5.1 Experimental Setup
	5.2 Overview of Method Performance
	5.3 Quantization Performance of Different Bits
	5.4 Ablation Study
	5.5 Case Study

	6 Conclusion
	References
	A Running Cost Analysis
	B Compression method comparision
	C Quantization Settings

