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ABSTRACT

Sequential recommendation and group recommendation are two

important branches in the field of recommender system. While

considerable efforts have been devoted to these two branches in an

independent way, we combine them by proposing the novel sequen-

tial group recommendation problem which enables modeling group

dynamic representations and is crucial for achieving better group

recommendation performance. The major challenge of the problem

is how to effectively learn dynamic group representations based on

the sequential user-item interactions of group members in the past

time frames. To address this, we devise a Group-aware Long- and

Short-term Graph Representation Learning approach, namely GLS-

GRL, for sequential group recommendation. Specifically, for a target

group, we construct a group-aware long-term graph to capture user-

item interactions and item-item co-occurrence in the whole history,

and a group-aware short-term graph to contain the same informa-

tion regarding only the current time frame. Based on the graphs,

GLS-GRL performs graph representation learning to obtain long-

term and short-term user representations, and further adaptively

fuse them to gain integrated user representations. Finally, group

representations are obtained by a constrained user-interacted at-

tention mechanism which encodes the correlations between group

members. Comprehensive experiments demonstrate that GLS-GRL

achieves better performance than several strong alternatives com-

ing from sequential recommendation and group recommendation

methods, validating the effectiveness of the core components in

GLS-GRL.

CCS CONCEPTS

• Information systems→Recommender systems; Personaliza-
tion; Temporal data.
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1 INTRODUCTION

Modern recommender systems play a pivotal role in shaping the

way of user-item interactions. This is especially crucial in the in-

formation explosion era where users commonly suffer from the

information overload issue (e.g., millions of products in Amazon and

large-scale streaming user-generated content in Twitter). As a re-

sult, large research efforts have been devoted to developing effective

recommendation models and algorithms for different recommen-

dation problem settings. Sequential recommendation [17, 33] is a

hot research problem in this regard, which aims to predict the next

item that a target user prefers to interact with. It poses a major chal-

lenge of learning dynamic user preference representations based

on sequential user-item interactions. Recurrent neural networks

(RNNs) [8], convolutional neural networks (CNNs) [19], powerful

attention mechanism [10], and recently graph neural networks

(GNNs) [26] have been applied to this problem.

From another perspective, some studies investigate the situations

where recommended items are served to a target group of users,

instead of an individual user in general sequential recommendation.

This problem is called group recommendation [15]. The form of

user groups is widely prevalent in online social medias, such as

Meetup
1
where users are organized as groups to participate some

offline activities, Facebook
2
in which groups are interest clubs, and

WeChat
3
wherein users easily create groups for chatting. Recent

studies for group recommendation center on how to automatically

quantify the relative importance of individual preferences in form-

ing group-level preference, beyond using empirical strategies such

as averaging preference scores of group members [2]. Two rep-

resentative technique branches are probabilistic models [13] and

attention-based approaches [3]. Nevertheless, researches to date

1
https://www.meetup.com/

2
https://www.facebook.com/groups/

3
https://www.wechat.com/
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Figure 1: Illustration of sequential group recommendation

with news articles as items. Arrow lines denote the interac-

tions between items and group members.

formulate the problem as static recommendation, overlooking the

sequential nature of group members’ behaviors.

In this paper, we formulate a novel problem called Sequential

Group Recommendation (SGR) which lies at the intersection of

sequential recommendation and group recommendation. As Fig-

ure 1 shows, this problem aims to leverage the sequential item

interactions of the target group members in the past time frames

to predict which items will get more interactions from the target

group members in the next time frame. Since new groups formed

by existing users may emerge on social platforms from time to

time, the ability of recommending items to both existing groups

and new groups is required by the problem. Compared to the pre-

vious group recommendation problem settings, sequential group

recommendation is very instrumental, enabling modeling group dy-

namic representations inspired by sequential recommendation and

be promising for boosting group recommendation performance.

Note that although the studies [14, 27] involve the concepts of

sequential recommendation and groups, they are fundamentally

different from our study because: (1) the former study is tailored for

conversational recommendation and its method is fully empirical,

without having a model learning process; (2) the latter actually uti-

lizes group preference to facilitate the sequential recommendation

for individual users, aiming to overcome the sparsity issue.

To deal with this problem, a fundamental challenge is how to

effectively learn dynamic group representations based on the se-

quential user-item interactions of group members in the past time

frames. In actuality, the group representations are reflected by the

group members’ dynamic representations, which is suitable for

both existing groups and new groups. As such, user representations

are indispensable, bridging the gap between specific user-item in-

teractions and group representations. Then the overall fundamental

challenge is decomposed into specific challenges:

- How to leverage group membership and sequential user-item

interactions to learn user representations?

- How to utilize the obtained user representations to represent

group preference?

In order to handle the above-mentioned two challenges well, we

propose the GLS-GRL model (short for Group-aware Long- and

Short-term Graph Representation Learning). It is welcomed by its

ability of enabling group membership to impact user representation

learning and achieving group representations based on the obtained

user representations. To be specific, in each time frame, we first

build group-aware long- and short-term graphs, both of which share

all the users belonging to the same target group. The long-term

graph contains user-item interactions and item-item co-occurrence

in the whole history, while the short-term graph contains the in-

formation regarding only the current time frame. Based on the

two graphs, GLS-GRL employs graph representation learning on

the two graphs to learn user long- and short-term representations,

respectively. These two types of representations are fused by a sim-

ple gating mechanism to obtain integrated user representations. In

this way, the first challenge is addressed. For the second challenge,

GLS-GRL further develops a constrained user-interacted attention

inspired by the sub-attention network [20]. It encodes the corre-

lations between group members by representing a user w.r.t. the

representations of other selected group members who are required

to have at least one co-interacted item. The group representations

are finally achieved by integrating the user representations.

To sum up, the main contributions are as follows:

• We formulate a novel problem named sequential group rec-

ommendationwhich requires tomodel the sequential dynam-

ics of group representations overlooked by existing studies

for group recommendation.

• We develop the model GLS-GRL with the innovations of

learning long- and short-term user representations through

the corresponding group-aware long- and short-term graphs,

as well as the coupling of group representation learning and

user representation learning.

• We conduct comprehensive experiments on two real-world

datasets and demonstrate GLS-GRL achieves superior per-

formance compared to strong alternatives, validating some

key designs of the model.

2 RELATEDWORK

In this section, we review relevant studies from three aspects: se-

quential recommendation, group recommendation, and GNNs for

recommendation.

2.1 Sequential Recommendation

In contrast to general recommendation task settings, sequential

recommendation has its characteristics in addressing the sequence

nature of user behaviors and predicting what users will prefer in

the near future (e.g., next time frame). Early studies on sequential

recommendation rely on first-order Markov assumption that the

next interaction only depends on the current interaction of the

same user, including transition counting-based methods [5] and la-

tent factor models [17]. Inspired by the widespread success of deep

learning, recent years have witnessed the applications of RNNs,

CNNs, attention mechanism, and GNNs to sequential recommenda-

tion. Specifically, the pioneering study [8] leverages RNNs in this

domain by regarding interacted items as words. CNNs [19], the

infrastructure for image processing, are also verified to be effec-

tive in this regard to a certain extent, by mapping item sequences

to embedding matrices. To quantify the different importance of



past interactions on the next prediction, attention mechanism [10–

12, 18] is adopted. From a different perspective, GNNs model the

interactions as a graph, which will be discussed in Section 2.3.

Most of the existing sequential recommendation approaches

serve for an individual user. A straightforward idea is to directly

utilize these methods to learn user representations and then ag-

gregate them through some fusion approaches. However, it cannot

leverage group membership to gain the user representations, as em-

phasized in the first challenge. It is worth noting that we could not

map group IDs to embeddings for enhancing input representations

since new groups that do not appear in a training stage should be

handled.

2.2 Group Recommendation

Group recommendation requires to fuse individual preferences of

all the members in a user group. To this end, some empirical and

simple strategies are first adopted. O’Connor et al. [15] used the

least satisfied user’s preference to represent group-level preference

(a.k.a. least misery strategy). [2] compares a few preference aggre-

gation strategies, including the simple average aggregation strategy,

and find: (1) the results of these strategies are similar, and (2) the

group recommendation is harder than individual recommendation.

Nevertheless, these strategies are a little too empirical without

having a learning procedure to guide the aggregation.

To automatically measure the influence of individuals, probabilis-

tic models [6, 13, 28, 31] are proposed to characterize item recom-

mendation as a generation process. The basic procedure shared in

these models is to first select a user for a target group (or members

in the same group) and then generate items based on the user and

associated hidden topics. However, they suffer a limitation that

users’ distributions overs topics or items, also regarded as user

representations, are independent of groups [20]. Recently, deep

representation learning-based models [3, 20, 29] are proposed. All

of them leverage the attention mechanism [1] to calculate the indi-

vidual influence weight w.r.t. specific group for effectively fusing

user representations. It is demonstrated that they perform better

than probabilistic models.

All the above group recommendation methods do not consider

the sequence nature of user behaviors which constitute the dy-

namics of groups. This motivates the proposal of sequential group

recommendation and the development of tailored models for the

problem. Note that some studies [32] formulate group recommen-

dation as recommending groups to a specific user to join, while

some other researches [9, 27] utilize group information to promote

the recommendation performance for individuals, both of which

are conceptually different from the studied problem.

2.3 GNNs for Recommendation

Graph neural networks model the user-item interactions as graphs,

which are welcomed for the ability of encoding high-order corre-

lations into low-dimensional user and item representations. Pin-

Sage [30] is put forward for propagating representations on item-

item graph through graph convolutional layers. NGCF [24] models

user-item bipartite graph to learn from collective user behaviors.

RippleNet [22] leverages knowledge graphs to propagate user pref-

erence revealed by the interacted items to candidate items that

might be recommended. These methods are tailored for general

recommendation settings and do not address the sequence nature

of user behaviors.

In the domain of sequential recommendation, the latest stud-

ies [16, 23, 25, 26] model the current session of a target user as an

item-item graph, or convert multiple sessions of different users into

a globally shared item-item graph. The next item recommendation

is achieved by calculating the similarities between candidate items

and the overall representation of the session. The above studies con-

duct recommendation for individuals by capturing user short-term

preference.

By contrast, we aim to capture both long- and short-term user

preference for sequential group recommendation, i.e., predicting

which items a target group will prefer in the next time frame. We

also inherit the idea of GNN-based modeling by building group-

aware long- and short-term graphs. This enables the user repre-

sentation learning to be guided by both group membership and

sequential user-item interactions.

3 PROBLEM FORMULATION

We utilize 𝑈 = {𝑢1, 𝑢2, ...𝑢 |𝑈 |} and 𝑉 = {𝑣1, 𝑣2, ..., 𝑣 |𝑉 |} to denote

the two most basic elements in recommender system, i.e., user set

and item set, respectively. A user group 𝑔 is associated with a user

set 𝑀𝑔 ⊆ 𝑈 , which can be either an existing group or a newly

emerged group. As such, the number of groups might change along

with time. For each user 𝑢 ∈ 𝑈 , we denote the user’s long-term his-

tory behaviors as 𝐻 𝑙𝑢 = (𝑣𝑙
0
, 𝑣𝑙

1
, 𝑣𝑙

2
, ...) corresponding to the whole

history, and short-term history behavior as 𝐻𝑠𝑢 = (𝑣𝑠
0
, 𝑣𝑠

1
, 𝑣𝑠

2
, ...) cor-

responding to the current time frame 𝑇 . We further utilize Ω(𝐻 𝑙𝑢 )(
Ω(𝐻 𝑙𝑢 ) ⊆ 𝑉

)
and Ω(𝐻𝑠𝑢 )

(
Ω(𝐻𝑠𝑢 ) ⊆ 𝑉

)
to denote the set of con-

tained items in the history behaviors, respectively.

Based on these notations, we first define the group-aware long-

term graph and group-aware short-term graph as follows:

Definition 1 (Group-Aware Long-Term Graph). G𝑙𝑔 =

{V𝑙
𝑔 , E𝑙𝑔 } is a group-aware long-term graph for the given group 𝑔 if it

satisfies: (1) V𝑙
𝑔 =

⋃
Ω(𝐻 𝑙𝑢 ) |𝑢∈𝑀𝑔

⋃
𝑀𝑔 ; (2) E𝑙𝑔 contains user-item

and item-item edges which are constructed by the later introduced
graph construction procedure with {𝐻 𝑙𝑢 }𝑢∈𝑀𝑔

as input.

Definition 2 (Group-Aware Short-Term Graph). G𝑠𝑔 =

{V𝑠
𝑔 , E𝑠𝑔 } is a group-aware short-term graph for the given group 𝑔 if

it satisfies: (1)V𝑠
𝑔 =

⋃
Ω(𝐻𝑠𝑢 ) |𝑢∈𝑀𝑔

⋃
𝑀𝑔 ; (2) E𝑠𝑔 contains user-item

and item-item edges which are constructed by the later introduced
graph construction procedure with {𝐻𝑠𝑢 }𝑢∈𝑀𝑔

as input.

The group-aware long-term graphs capture group members’

long-term preference, while the group-aware short-term graphs

pay more attention to their dynamic preferences. As such, the two

types of the graphs are the cornerstones for near-future prediction.

Formally, we define the sequential group recommendation problem

as follows:

Problem 1 (Seqential Group Recommendation). Given
a target group 𝑔, and its group-aware long- and short-term graphs
G𝑙𝑔 and G𝑠𝑔 depending on the current time frame𝑇 , this problem aims
to learn a function 𝑓 (𝑔,G𝑙𝑔 ,G𝑠𝑔 , 𝑣) → 𝑠

𝑔

𝑖
for for a candidate item 𝑣 ,
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Figure 2: The architecture of GLS-GRL. The colors used in the left two components of the model correspond to the long- and

short-term aspects, respectively. And each color used in the right part indicates a specific user.

where 𝑠𝑔
𝑖
denotes the group-level preference score for that item in the

next time frame 𝑇 + 1.

Without causing ambiguity, we omit the superscripts and sub-

scripts related to the group 𝑔 for simplicity in the remaining of this

paper.

4 PROPOSED MODEL

The overall architecture of our model GLS-GRL is shown in Figure 2.

It takes a group’s long-term graph and short-term graph as input,

and outputs the group-level representation for similarity calculation

with candidate items for recommendation. The long-term (or short-

term) graph is constructed based on group members’ interactions

with items in the whole history (or in the current time frame).

Figure 3 shows a toy example to illustrate the construction of the

two graphs. GLS-GRL consists of four key components: (1) long- and

short-term user representation learning, (2) long- and short-term

user representation fusion, (3) constrained user-interacted attention,

and (4) group representation aggregation. A hybrid ranking-based

loss function is proposed to optimize GLS-GRL. Before elaborating

the above key components and the objective function, we illustrate

the graph construction procedure.

4.1 Group-Aware Graph Construction

In common sequential recommendation scenarios, users’ sequential

interactions with items are recorded, which are utilized for con-

structing group-aware long- and short-term graphs. We take an

example, containing group members’ behaviors (shown in 3(a)) and

all users’ behaviors (shown in 3(b)), to illustrate the procedure for

graph construction. As defined in the Definition 1 and 2, the two

graphs share the same user nodes and the item nodes are what

𝑢𝑢1 𝑢𝑢3𝑢𝑢2

𝑣𝑣2

𝑣𝑣4

𝑣𝑣3𝑣𝑣1

𝑣𝑣5

𝑢𝑢1 𝑢𝑢3𝑢𝑢2

𝑣𝑣2

𝑣𝑣3𝑣𝑣1

Long-Term

Short-Term

Timeline

(b) All Users' Behaviors

(c) Group-Aware Long-Term Graph

(d) Group-Aware Short-Term Graph

(a) Group Members' Behaviors

𝑣𝑣4 𝑣𝑣3 𝑣𝑣1 𝑣𝑣2𝑢𝑢1

𝑣𝑣4 𝑣𝑣2𝑢𝑢2 𝑣𝑣1

𝑣𝑣5 𝑣𝑣3𝑢𝑢3

𝑣𝑣4 𝑣𝑣3 𝑣𝑣1 𝑣𝑣2𝑢𝑢1
𝑣𝑣4 𝑣𝑣2𝑢𝑢2
𝑣𝑣5 𝑣𝑣3𝑢𝑢3

𝑣𝑣6 𝑣𝑣1 𝑣𝑣3 𝑣𝑣5𝑢𝑢4
𝑣𝑣2 𝑣𝑣5 𝑣𝑣6𝑢𝑢5

𝑣𝑣1 𝑣𝑣2 𝑣𝑣4 𝑣𝑣3𝑢𝑢6

𝑣𝑣1

Figure 3: A toy example to illustrate graph construction.

the group members have interacted in the whole history (for the

long-term graph) or in the current time frame (for the short-term

graph). As such, the nodes in the graphs could be easily determined.



Then it comes to introduce how to construct edges in the two

graphs. There are two types of edges in the constructed graphs,

i.e., user-item edges and item-item edges. On the one hand, the

user-item edges naturally capture the dynamic preference of group

members. If a user has interacted with an item in the past, there will

be an edge connecting the user and the item. As Figure 3(a) shows,

user 𝑢1 has interacted with items 𝑣3, 𝑣1, and 𝑣2 in the current time

frame, then there are edges between user 𝑢1 and these items in the

group-aware short-term graph, as shown in Figure 3(d). Similarly,

since user 𝑢3 has interactions with items 𝑣5 and 𝑣3 in the whole

history, there are edges the user and these items in the group-aware

long-term graphs, as shown in Figure 3(c). On the other hand, the

item-item edges encode relations between different items, which

are considered to be more stable than user preferences. Thus we

construct item-item edges with a shared strategy for both of the

two graphs. Specifically, if two items have been interacted with any

user continuously, we assume there is an edge between the two

items. For example, as shown in the behavior sequence of user 𝑢1,

since 𝑣1 and 𝑣2 are interacted with the user continuously, 𝑣1 and 𝑣2

should have an edge.

4.2 Long- and Short-Term User Representation

Learning

Before learning to encode graph relations into low-dimensional

user representations, the first step is to build input representations

for users and items. To achieve this, we use ē𝑣 ∈ R |𝑉 |
and

¯f𝑢 ∈ R |𝑈 |

denote one-hot representations of each item 𝑣 ∈ 𝑉 and each user

𝑢 ∈ 𝑈 . Afterwards, we use two trainable embedding matrices,

E ∈ R |𝑉 |×𝑑
and F ∈ R |𝑈 |×𝑑

, to convert each of them into low-

dimensional dense vectors, e𝑣 ∈ R𝑑 and f𝑢 ∈ R𝑑 , respectively:

e𝑣 = E⊤ē𝑣 , (1)

f𝑢 = F⊤¯f𝑢 . (2)

The mathematical formulas are almost the same for graph repre-

sentation learning on the two graphs, thus we take the long-term

graph G𝑙 as an example for illustration. We assume h𝑙,(0)𝑣 = e𝑣 is
the initial representation of item node 𝑣 ∈ V𝑙

, and h𝑙,(0)𝑢 = f𝑢 is the

initial representation of user node 𝑢 ∈ V𝑙
. Then we adopt a com-

monly used two-stage procedure [30] to conduct representation

propagation on graphs. The first step is to aggregate representa-

tions of neighborhoods for a target node. Since there are two types

of nodes in the graph, we first define the way of representation

aggregation for a user node as follows:

¯h𝑙,(𝑘)𝑢 =

∑
𝑣∈𝑁 𝐼

𝑢
h𝑙,(𝑘−1)
𝑣

|𝑁 𝐼𝑢 |
, (3)

where 𝑁 𝐼𝑢 denotes the item neighborhoods of user 𝑢, and 𝑘 denote

the 𝑘-th time of aggregation. By contrast, an item node is not

only involved in user-item edges, but also associated with item-

item edges. As a result, it has two types of neighborhoods and the

corresponding aggregated representation is computed by:

¯h𝑙,(𝑘)𝑣 =

∑
𝑢∈𝑁𝑈

𝑣
h𝑙,(𝑘−1)
𝑢

|𝑁𝑈𝑣 |
+
∑
𝑣′∈𝑁 𝐼

𝑣
h𝑙,(𝑘−1)
𝑣′

|𝑁 𝐼𝑣 |
, (4)

where 𝑁𝑈𝑣 and 𝑁 𝐼𝑣 denote the user neighborhoods and item neigh-

borhoods of item 𝑣 , respectively. Through the above manner, the

item representations are simultaneously influenced by user and

item representations. Note that we also consider the situation that

edges in the graphs take continuous values. As illustrated later in

Section 5, we adopt an intuitive way of incorporating continuous

edge weights into the aggregation process. However, currently no

improvements are observed in the experiments.

The second step of representation propagation is to update the

target user and item representations by the aggregated representa-

tions:

h𝑙,(𝑘)𝑢 = ¯h𝑙,(𝑘)𝑢 + h𝑙,(𝑘−1)
𝑢 , (5)

h𝑙,(𝑘)𝑣 = ¯h𝑙,(𝑘)𝑣 + h𝑙,(𝑘−1)
𝑣 . (6)

We assume the total number of propagation is 𝐾 . Therefore the

obtained long-term user representation is h𝑙,(𝐾)𝑢 .

Thanks to the constructed group-aware short-term graph G𝑠 ,
we can gain the short-term user representation denoted as h𝑠,(𝐾)𝑢

in a similar manner. It is worth noting that the initial represen-

tation of user node 𝑢 in the short-term graph is initialized as a

zero vector: h𝑠,(0)𝑢 = 0. This makes sense because the aim of graph

representation learning on this graph is to learn short-term user

representations mainly based on their recently interacted items.

And initialization with a zero vector could eliminate the influence

of long-term user representations.

4.3 User Representation Fusion

So far we have the long- and short-term user representations avail-

able. We add a nonlinear fully-connected (nFC) layer on top of user

representations to endow them with richer expressive ability. The

computations are defined as below:

p𝑙𝑢 = nFC(h𝑙,(𝐾)𝑢 ) + h𝑙,(𝐾)𝑢 , (7)

p𝑠𝑢 = nFC(h𝑠,(𝐾)𝑢 ) + h𝑠,(𝐾)𝑢 , (8)

where nFC uses tanh as its nonlinear activation function. The idea

of short-cut [7] is also contained in the above equations.

As introduced, the long-term user representations correspond

to long-term preference, while the short-term user representations

reveal the dynamic and recent preference. The two types of rep-

resentations are complementary to each other and the fusion of

them could have a stronger expressive ability. To ensure an adap-

tive fusion, we adopt a simple gating mechanism to calculate the

relative importance of each representation type for a specific user.

Mathematically, it is defined as:

p𝑢 = 𝑎𝑢p𝑙𝑢 + (1 − 𝑎𝑢 )p𝑠𝑢 , (9)

where 𝑎𝑢 is a scalar value denoting the ratio that the long-term rep-

resentation occupies in forming the integrated user representation

p𝑢 , which is computed by:

𝑎𝑢 = 𝜎 (w𝑔⊤ [p𝑙𝑢 ; p𝑠𝑢 ]) , (10)

where 𝜎 is a Sigmoid function, w𝑔 ∈ R2𝑑
is trainable parameter

vector, and [·; ·] denotes concatenate operation.



4.4 Group Representation Learning

Based on integrated user representations, GLS-GRL performs group

representation learning through constrained user-interaction atten-

tion, which learns the hidden correlations between group members,

and group representation aggregation, deriving group-level repre-

sentations.

4.4.1 Constrained user-interacted attention. The recently proposed
sub-attention network [20] achieves the state-of-the-art perfor-

mance in the static group recommendation problem. This network

utilizes the self-attention technique [21] to represent one user with

the weighted combination of other groupmembers’ representations.

The weights for combination are obtained by attention computation.

However, one issue of the sub-attention network is that the atten-

tion computation for each user is conducted over all the other group

members. This is time-consuming and may not be so necessary

since in real situations, not all users in the same group have direct

interactions. With this intuition, we provide a simple modification

over the self-attention technique by constraining the group mem-

bers to be attended for each target user, which is named constrained

user-interacted attention mechanism.

Specifically, we first use 𝑐𝑜-𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑢,𝑢 ′) to denote the number

of items that are interacted with both user 𝑢 and 𝑢 ′ in the whole

history. Then we employ 𝑁𝑈𝑢 to denote the neighborhoods of user𝑢

in the group, which satisfies that: ∀𝑢 ′ ∈ 𝑁𝑈𝑢 , 𝑐𝑜-𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑢,𝑢 ′) ≥ 1.

Based on this, we define the computational details of the constrained

user-interacted attention as follows:

𝛽𝑢,𝑢′ =
exp(p⊤𝑢W𝑎p𝑢′)∑

𝑢′∈𝑁𝑈
𝑢

exp(p⊤𝑢W𝑎p𝑢′)
, (11)

where a bilinear method is applied to measure the similarities be-

tween user 𝑢 and 𝑢 ′, and W𝑎
is the trainable matrix of the method.

Given the attention weights, the updated user representation is

calculated by:

q𝑢 =
∑

𝑢′∈𝑁𝑈
𝑢

𝛽𝑢,𝑢′p𝑢′ . (12)

4.4.2 Group representation aggregation. Finally, we aggregate the
updated user representations to obtain the group-level representa-

tion for the group. As the study [20] demonstrates, an additional

attention computation over user representations could not yield

improvements in performance. Thus we adopt the simple mean-

pooling technique defined as follows:

g =

∑
𝑢∈𝑀 q𝑢
|𝑀 | . (13)

So far, GLS-GRL takes the group 𝑔, its long- and short-term

graphs G𝑙𝑔 and G𝑠𝑔 as input, and can output the graph representation
g, which is later used for computing group preference scores for

candidate items.

4.5 Model Prediction and Training

4.5.1 Model Prediction. In this part, we clarify the way of calcu-

lating the group-level preference score 𝑠 to the candidate item 𝑣 ,

so as to show the whole picture of the function 𝑓 (mentioned in

Problem 1) in our approach. We argue the preference score to a

candidate item 𝑣 consists of two parts: (1) the relevance between

the group and the item, measured by the cosine similarity; (2) the

popularity of the item, independent of specific groups. Then the

score 𝑠 is computed by:

𝑠 =
g⊤e𝑣

| |g| | � | |e𝑣 | |
+ pop𝑣 . (14)

where pop𝑣 could be regarded as the popularity bias of item 𝑣 ,

which is a trainable parameter of our model. We initialize the value

to be 0 for training.

4.5.2 Model Training. For group recommendation, we present a

hybrid loss function, consisting of an explicit ranking loss and an

implicit ranking loss. We utilize 𝑌𝐸 ⊆ 𝑉 to denote the item set

in which all the items have been interacted with group members,

and 𝑌 𝐼 ⊆ 𝑉 to denote the negative item set where each item has

not been interacted with any user in the group. Based on this, we

formally define the explicit ranking loss as follows:

L𝐸 =
∑
𝑣∈𝑌𝐸

∑
𝑣∈𝑌𝐸

I(num_m𝑣 > num_m𝑣) max(0, 𝑠𝑣 +𝛾 − 𝑠𝑣) , (15)

where I(∗) is an indicator function which takes value of 1 if a

condition ∗ is satisfied. num_m𝑣 represents the number of group

members which have interacted with item 𝑣 . 𝛾 is the margin and set

to 0.1 in the experiments.We further define the implicit ranking loss,

commonly adopted by previous group recommendation methods:

L𝐼 =
∑
𝑣∈𝑌𝐸

∑
𝑣∈𝑌 𝐼

max(0, 𝑠𝑣 + 𝛾 − 𝑠𝑣) . (16)

In the end, we combine the two loss functions by a linear interpola-

tion to obtain the hybrid loss function:

L = 𝛼L𝐸 + (1 − 𝛼)L𝐼 , (17)

where 𝛼 is a hyper-parameter to control the relative importance of

each loss function.

5 EXPERIMENTS

In this section, we conduct experiments to answer the following

research questions:

• Q1: How does GLS-GRL perform compared with existing se-

quential recommendation approaches, group recommendation

methods, and some combined approaches for sequential group

recommendation?

• Q2: Do the key components of GLS-GRL contribute to the rec-

ommendation performance? Are the core designs of GLS-GRL

rational and effective compared with alternatives?

To achieve this, we first clarify the experimental setup and then

analyze the experimental results in depth.

5.1 Experimental Setup

5.1.1 Dataset. We adopt two real-world datasets named WeChat

and MovieLens. The WeChat dataset is collected from Top Stories
(看一看) of WeChat, wherein users can browse articles posted

by official accounts of WeChat. We select about twenty thousand

groups with at least 3 members from WeChat, and collect all group

members’ click records for a duration of one week. We take one

day as a time frame for splitting the dataset. The MovieLens dataset

is obtained from the MovieLens 20M Data
4
. It contains about 20

4
https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/


Table 1: Basic statistics of the datasets.

Data WeChat MovieLens

#Users 61,170 10,551

#Groups 21,908 58,021

#Items 73,297 2,549

Avg. group size 11.32 4.86

Time duration 2019/10/18∼24 1999/03/27∼2000/05/20
#Training data 39,663 56,470

#Validation data 3,584 2,664

#Test data 7,170 5,328

million ratings generated by 138,000 users for 27,000 movies. In

this paper, we assume that a user has an interaction with a movie if

the user gives it a rating larger than 3. To make the sparse dataset

suitable for sequential recommendation, we collect user rating

records in 60 weeks and take 10 weeks as a time frame. Since there

is no explicit group structure in the dataset, we follow the strategy

used in [2] to generate groups with similar users. This is realized

by firstly computing the user-user similarity matrix by Pearson

correlation coefficients and then aggregating similar users into

groups, requiring that the similarity values of all user pairs in each

group are larger than 0.27. In total, we generate about 60,000 groups

with at least 3 members.

For each time frame, we regard the ground-truth of a target

group as items that have been interacted with at least two members

in the group. We use users’ interaction records in the whole history

as their long-term behaviors and in the current time frame as short-

term behaviors, and ensure that long-term behaviors cover at least

four time frames. We take all the data except the last time frame

as training data. 1/3 data from the last time frame is taken as as

validation data to determine optimal hyper-parameter setting and

early stopping, and the left 2/3 data of the last time frame as test

data to evaluate performance of different approaches. The item-

item co-occurrence relationships used to construct graphs are only

based on training data. In summary, the basic statistics of both

datasets are summarized in Table 1.

5.1.2 Baselines. Weadopt different kinds of recommendationmeth-

ods in the experiments. To ensure a fair comparison, we make all

the trainable baselines to adopt the same score generation manner

(Eq. 14) and hybrid loss function (Eq. 17) as ours, which is an ex-

tension of the general pairwise-ranking loss utilized by them. The

effectiveness of the hybrid loss is demonstrated later.

• POP [4]: It is the simplest onewhich always recommends popular

items in training data to groups, regardless of other information.

• MF+AVG [20]: Matrix factorization learns latent factors for user

and item identifiers. In our implementation, since there is no

available group identifier, we use the average embeddings of

group members in groups as its latent factor.

• AGREE [3]: It aggregates the preferences of group members

based on attention computation over group members and group

preference embedding associated with group identifiers. In our

implementation, we only consider the modeling of group-item

interactions.

• MoSAN [20]: This is the state-of-the-art group recommendation

model which first obtains user preference embedding with re-

spect to all other members by self-attention mechanism, and then

summarizes all group members’ preference as group preference.

• GRU4Rec+AVG: GRU4Rec [8] is an RNN-based deep sequen-

tial model for sequential recommendation. To adapt it to group

recommendation, we apply mean pooling for aggregating each

group member representations obtained by GRU networks as

group representations.

• STAMP+AVG: STAMP [12] learns users’ preferences from their

last behaviors and long-term behaviors to obtain user represen-

tation. Similarly, we also apply mean pooling for aggregating

each group member representation obtained by STAMP as group

representation.

• Combined models for SGR (GRU4Rec+AGREE, STAMP+

AGREE, GRU4Rec+MoSAN, STAMP+MoSAN). These mod-

els combine a sequential recommendation model and a group

recommendation model with end-to-end learning. Specifically,

they feed user representations obtained from sequential models

(e.g. GRU4Rec or STAMP) into group recommendation models

(e.g. AGREE or MoSAN) to get the group representations.

• SR-GNN: SR-GNN [16] is a graph-based session-based recom-

mendation model which leverages graphs to encode item rela-

tions and obtain the session representation through an attention

network. In our implementation, user embeddings and the ob-

tained session representations are taken as user representations.

We attempted different methods to aggregate group members’

representations to group representation and report the best re-

sults.

• NGCF: NGCF [24] learns user and item representations via GNN

on a user-item bipartite-graph. Same as SR-GNN, we attempted

different methods to aggregate group member’s representations

and report the best results.

5.1.3 Metrics. We adopt four widely used metrics as reference and

provide the computational details for a single example. The first

two ranking-based metrics: Mean Average Precision (MAP) and

Normalised Discounted Cumulative Gain (NDCG). Among them,

MAP is defined as:

𝑀𝐴𝑃@𝑁 =

∑𝑁
𝑛=1

𝑃@𝑛 × ℎ𝑖𝑡 (𝑛)
number of relevant items @N

× 100% , (18)

where ℎ𝑖𝑡 (𝑛) denotes whether the item ranked at the position of

n is true, 𝑃@𝑛 is the top-n precision, and N is the number of item

recommendations be evaluated. NDCG is computed by:

𝐷𝐶𝐺@𝑁 =

𝑁∑
𝑛=1

num_m𝑛

log
2
(𝑛 + 1) , (19)

𝑁𝐷𝐶𝐺@𝑁 =
𝐷𝐶𝐺@𝑁

𝐼𝐷𝐶𝐺@𝑁
× 100% , (20)

where num_m𝑛 is the number of group members interacted with

the 𝑛-th recommended item, and IDCG@N is the ideal DCG@N.

The last two are classification metrics: Recall and Precision. They

are defined as:

𝑅@𝑁 =
number of hit items

number of relevant items

× 100% , (21)



Table 2: Overall performance on the two datasets. Results are denoted by percentages (% is omitted).

Methods

WeChat MovieLens

MAP@10 NDCG@10 R@3 P@3 MAP@10 NDCG@10 R@3 P@3

POP 5.6028 8.1389 6.2788 7.1827 1.0029 2.4055 0.3962 0.4942

MF+AVG 6.5893 10.5072 6.8205 8.4226 1.9722 3.2306 2.2316 1.0928

GRU4Rec+AVG 7.4696 11.7308 7.9073 8.7355 2.6348 4.7653 3.9497 2.1178

STAMP+AVG 6.6999 10.8623 7.2624 8.3806 2.8253 4.2415 3.1286 1.7121

AGREE 8.3988 13.2372 8.7693 8.9850 1.9756 3.2786 2.2396 1.1949

MoSAN 8.4789 13.2325 9.0813 9.2004 2.1503 3.3146 2.3113 1.2012

GRU4Rec+AGREE 9.0862 14.0851 9.4360 9.9463 3.5300 5.3445 4.8794 2.3236

STAMP+AGREE 8.6498 13.3924 9.1022 9.3429 3.4271 5.0587 3.9037 1.9182

GRU4Rec+MoSAN 9.1412 14.1740 9.5957 10.0192 3.2251 5.2410 4.1547 2.1083

STAMP+MoSAN 8.5313 13.3801 9.1452 9.2376 2.9560 4.5534 3.4722 1.7101

SR-GNN 9.4878 14.6005 9.6917 10.8910 3.4921 5.4665 3.7255 2.2856

NGCF 9.1369 14.0697 9.6037 9.8683 4.2490 5.5359 5.0417 2.4066

Ours (GLS-GRL) 10.1615 15.6782 10.4713 11.1344 4.6078 5.9109 5.1406 2.4668

𝑃@𝑁 =
number of hit items

𝑁
× 100% . (22)

The final results are obtained by averaging over the test sets. We

use MAP@10 and NDCG@10, and R@3 and P@3 for evaluation,

focusing more on the performance of top-ranked answers.

5.1.4 Implementation Details. We implement our model based on

Tensorflow and adopt Adam with default parameter setting except

learning rate of 1e-4 and mini-batch size of 64 to optimize the model.

The dimension of latent vectors is set to 64. The depth of GNN is set

to 3 for both datasets, and the hyper-parameter 𝛼 of loss function

is set to 0.4 for WeChat dataset and 0.8 for MovieLens dataset. We

use early stopping strategy to terminate the learning process when

the best performance on the validation data keeps unchanged for

more than 20 batches. We randomly sample 20 items as negative

samples for each training instance.

5.2 Experimental Results

5.2.1 Model Comparison (Q1). Table 2 shows the overall results of
all the adopted models, from which we can observe:

• POP performs worst among all the methods on the two datasets.

This indicates that personalized preference of group members is

still crucial for the problem. MF+AVG outperforms POP signifi-

cantly, but is inferior compared to other baselines. This might be

due to the fact that the model capacity and nonlinear modeling

ability of MF is relatively limited.

• GRU4Rec+AVG and STAMP+AVG achieve better results than

MF+AVG, indicating even with simple aggregation strategies,

stronger models could boost performance. One interesting phe-

nomenon is that the two sequential models performs better than

the two group recommendation models i.e. AGREE and MoSAN

on MovieLens but performs worse on WeChat. It reveals that

group behaviors and sequential behaviors show different impor-

tance for recommendation depending on specific datasets.

• The combined models (e.g., *+AGREE and *+MoSAN) present

significantly better results than the models of *+AVG. The reason

is that more advanced and effective group aggregation techniques

indeed bring benefits towards the SGR problem. Besides, MoSAN

behaves better than AGREE as a single model, but does not show

Table 3: Results of different depth of GNN on WeChat.

Depth MAP@10 NDCG@10 R@3 P@3

1 9.8673 15.1601 10.2574 10.8024

2 10.0198 15.4829 10.4414 10.9363

3 10.1615 15.6782 10.4713 11.1344

4 10.1160 15.5681 10.4205 11.0046

Table 4: Results of different depth of GNN on MovieLens.

Depth MAP@10 NDCG@10 R@3 P@3

1 4.1453 5.6110 4.8767 2.3361

2 4.2042 5.7114 4.9820 2.4199

3 4.6078 5.9109 5.1406 2.4668

4 4.0165 5.4272 4.4315 2.1559

improvements when combined with sequential recommendation

models. This shows self-attention mechanism used in MoSAN is

effective, but carefully-designed sequential models are needed

for better performance.

• The two graph-based recommendationmodels behavewell, show-

ing graph neural networks are powerful tools to learn from item-

item relations. In summary, the proposed GLS-GRL achieves su-

perior performance, by achieving 7.4% and 8.1% relative improve-

ment over the second best results w.r.t. NDCG@10 on WeChat

and MovieLens, respectively.

5.2.2 Ablation Study (Q2). To provide an in-depth analysis of GLS-

GRL, we consider two groups of variants of the model, where “w/o”

denotes removing corresponding components from GLS-GRL and

“w/” means replacing some components of GLS-GRL with alterna-

tive ways. Particularly, for the first group,“w/o Graph-Aware LTG”

and “w/o Graph-Aware STG” denote removing graph-aware long-

and short-term graphs, respectively. “w/o User-Level Gate” discards

gating mechanism shown in Eq. 9 and uses mean-pooling instead.

“w/o Constrained UIA” removes the computations shown in Eq. 11

and 12. “w/o Popularity Bias” deletes the item popularity score in

Eq. 14. For the second group, “w/ UIA” denotes using the same



Table 5: Ablation study of GLS-GRL on the two dataset.

Methods

WeChat MovieLens

MAP@10 NDCG@10 R@3 P@3 MAP@10 NDCG@10 R@3 P@3

w/o Graph-Aware LTG 9.9318 15.2810 10.2224 10.9129 3.2101 5.4945 3.5918 2.2147

w/o Graph-Aware STG 9.3674 14.6154 9.6656 10.0925 4.1406 5.6032 4.5617 2.2485

w/o User-Level Gate 10.0106 15.5360 10.3786 11.0744 4.1152 5.6362 4.8677 2.3699

w/o Constrained UIA 9.9091 15.2985 10.1661 10.8415 4.1945 5.5955 5.0321 2.4162

w/o Popularity Bias 9.7962 15.1317 10.1230 10.7638 2.7077 4.4861 5.0260 2.3878

w/ UIA 9.9082 15.2979 10.2513 10.9233 4.2451 5.6610 4.7833 2.2792

w/ Global Graph 9.3480 14.3026 9.8214 10.2464 4.3888 5.5364 4.8531 2.3774

w/ Continuous Edge Weights 10.1410 15.6523 10.3706 11.1134 4.2308 5.6255 5.0153 2.4418

w/ User-Init Short 9.8084 15.1279 10.3509 10.7661 4.3467 5.7422 5.0020 2.4124

Ours (GLS-GRL) 10.1615 15.6782 10.4713 11.1344 4.6078 5.9109 5.1406 2.4668
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Figure 4: Effect of loss function’s hyper-parameter 𝛼 with different weights.

self-attention computation of MoSAN by deleting the constraint

of users. “w/ Global Graph” replaces the two group-aware graphs

with two global graphs containing all users. “w/ Continuous Edge

Weights” utilizes continuous weights for weighted aggregation of

user and item representations. At last, “w/ User-Init Short” repre-

sents using user embeddings to initialize user representations in

the short-term graph.

Table 5 shows the performance of different variants. By first

investigating the results in the first part of the table, we have the fol-

lowing observations. (1) Either removing long-term graph or short-

term graph degrades the recommendation performance, showing

they are complementary for each other. (2) Using gating mecha-

nism for fusion leads to better user representations and group-level

representations. (3) Constrained user-interacted attention is indis-

pensable for improving performance as well. (4) Popularity bias of

items makes positive contributes to the performance, especially for

MovieLens. Note that as aforementioned, all the trainable baselines

adopt the same score generation manner as ours to ensure fairness

of comparison. We further compare the results of the variants and

GLS-GRL in the second part and have the corresponding obser-

vations. (1) Using self-attention computation without constraint

(same as MoSAN) suffers from performance drop. This indicates

incorporating constraint for user attention computation is effec-

tive. (2) Encoding relations from global graphs into user and item

representations leads to worse results. We attribute this to the lack

of mechanism for leveraging group information to help learning



group members’ representations. (3) Simply considering contin-

uous edge weights by weighted aggregation could not boost the

performance. (4) Initializing short-term user representations with

user embeddings instead of zero vector causes inferior performance.

The reason might be that the pure short-term user representations

better complement long-term representations.

5.2.3 Impact of propagation number K. To evaluate the impact of

the depth of GNN, we test different propagation numbers in the

range of [1, 2, 3, 4]. Table 3 and 4 show the corresponding results

on the two datasets, respectively. We can find that the performance

becomes better with the depth grows from 1 to 3, which shows the

advantages of modeling high-order relations between items and

users through GNN. When further increasing the layer number,

we observe no improvements and find the results are even worse

on MoveiLens. This might be attributed to the overfitting issue of

more layers.

5.2.4 Impact of 𝛼 . In Figure 4, we depict how the change of 𝛼 in

the hybrid loss function affects the performance of GLS-GRL and

two strong baselines, i.e., SG-GNN and NGCF. The left 4 subfigures

correspond to the results on WeChat and the right 4 subfigures

show the performance on MovieLens. Since the performance of

all the three approaches declines notably when 𝛼 is set 0 or 1, the

rationality of combining explicit and implicit ranking loss functions

is validated. Moreover, GLS-GRL outperforms SG-GNN and NGCF

in most value cases of 𝛼 , and its optimal results are significantly the

best. This demonstrates our model performance is robust. Besides,

the values of 𝛼 and their variation trends are not exactly the same

for the best results on the datasets, showing the relative importance

of the two losses depends on the characteristics of specific datasets.

6 CONCLUSION

In this paper, we formulate the novel and important problem of

sequential group recommendation. The fundamental challenge of

learning dynamic group representations based on the sequential

user-item interactions of group members is addressed by the pro-

posal of GLS-GRL. The model has the major innovation of consoli-

dating group representation learning and long- and short-term user

representation learning in a unified framework. Experiments on

real-world datasets verify the efficacy of the whole model and the

contributions of its main components.
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