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a b s t r a c t 

Data-free knowledge distillation (DFKD) is an effective manner to solve model compression and trans- 

mission restrictions while retaining privacy protection, which has attracted extensive attention in recent 

years. Currently, the majority of existing methods utilize a generator to synthesize images to support 

the distillation. Although the current methods have achieved great success, there are still many issues 

to be explored. Firstly, the outstanding performance of supervised learning in deep learning drives us to 

explore a pseudo-supervised paradigm on DFKD. Secondly, current synthesized methods cannot distin- 

guish the distributions of different categories of samples, thus producing ambiguous samples that may 

lead to an incorrect evaluation by the teacher. Besides, current methods cannot optimize the category- 

wise diversity samples, which will hinder the student model learning from diverse samples and further 

achieving better performance. In this paper, to address the above limitations, we propose a novel learning 

paradigm, i.e., conditional pseudo-supervised contrast for data-free knowledge distillation (CPSC-DFKD). 

The primary innovations of CPSC-DFKD are: (1) introducing a conditional generative adversarial network 

to synthesize category-specific diverse images for pseudo-supervised learning, (2) improving the mod- 

ules of the generator to distinguish the distributions of different categories, and (3) proposing pseudo- 

supervised contrastive learning based on teacher and student views to enhance diversity. Comprehensive 

experiments on three commonly-used datasets validate the performance lift of both the student and gen- 

erator brought by CPSC-DFKD. The code is available at https://github.com/RoryShao/CPSC-DFKD.git 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the development of artificial intelligence, the deep convo- 

utional neural networks (DCNNs) have been widely applied in var- 

ous computer vision tasks and achieved remarkable success, such 

s image classification [1] , object detection [2] , and semantic seg- 

entation [3] . Nevertheless, in practical applications, DCNNs suf- 

er from some heavy issues. Firstly, DCNNs always require heavy 

omputation and storage. For example, only to handle one image, 

 VGG network commonly requires more than 500MB of memory, 

hich makes them hard to be deployed on resource-constrained 

mbedded or edge devices such as mobile phones and autonomous 

ars. Secondly, security and privacy concerns have aroused ex- 

ensive attention. In some cases, training data cannot be publicly 

vailable, but pre-trained models are. For instance, the medical 

ata or photos of users are usually sensitive and not publicly re- 

eased. By contrast, the relevant pre-trained models do not involve 

ser privacy and can be published. Besides, the size and transmis- 
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ion are limited. The state-of-the-art models are usually trained on 

arge datasets such as ImageNet [1] with 14 million images, which 

s a heavy burden and a waste of resources to spread such large 

atasets. To address the above issues, the data-free knowledge dis- 

illation (DFKD) paradigm [4] is developed to compress the cum- 

ersome deep models into more lightweight ones without access 

o or transferring the original training data. This is opposed to the 

urrent knowledge distillation (KD) paradigm shown in Fig. 1 (a), 

hich relies on source data and manual labeling. It works by trans- 

erring the knowledge from a released pre-trained cumbersome 

eacher to a lightweight student without real data and aims to de- 

loy the student instead of the teacher, as shown in Fig. 1 (b). 

Existing DFKD methods can be mainly divided into two 

aradigms. The first paradigm is vanilla adversarial learning, in 

hich the generator aims to synthesize discriminative samples ac- 

ording to the discrepancy between the teacher and student. For 

xample, Chen et al. [4] proposed the data-free learning method, 

hich mainly exploits information entropy to optimize the gen- 

rator and mimic the distribution of the teacher to optimize the 

tudent by cross entropy. Micaelli et al. [5] mainly exploited ad- 

ersarial distillation with Kullback-Leibler (KL) divergence between 

he outputs of the teacher and student. This type of approach 

https://doi.org/10.1016/j.patcog.2023.109781
http://www.ScienceDirect.com
http://www.elsevier.com/locate/pr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109781&domain=pdf
https://github.com/RoryShao/CPSC-DFKD.git
mailto:zhangwei.thu2011@gmail.com
https://doi.org/10.1016/j.patcog.2023.109781
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Fig. 1. Conceptual diagram of different distillation approaches. (a) Knowledge dis- 

tillation by human labels. (b) Previous data-free distillation approaches with the 

generator. (c) Our proposed data-free approach by condition generator. 
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nly utilizes the output layer of the teacher model for training, 

hich is difficult to synthesize more realistic images and can eas- 

ly lead to model collapse. The second paradigm exploits the prior 

nowledge (e.g., parameters of BatchNorm) in intermediate layers 

f the teacher to optimize the synthesized images, which is able 

o synthesize diverse images for training and mitigate model col- 

apse. For example, Yin et al. [6] proposed to exploit Batch Nor- 

alization (BN) to optimize the noise to generate images. Fang 

t al. [7] proposed to employ BN to optimize the generator while 

mproving the diversity of synthetic images by contrastive learning. 

lthough these methods improve the effect of synthetic images in 

ome degree, there are still some limitations: (1) In the data-free 

cenario, there is still a performance gap between teacher and stu- 

ent. This is in contrast to the data-driven scenario, where the per- 

ormance of the student can even outperform the teacher. (2) The 

urrent DFKD methods are all in an unsupervised manner due to 

he data-free scenario, while the most successful paradigm in deep 

earning is supervised learning which has surpassed human perfor- 

ance in some areas. (3) Commonly, in existing methods, the gen- 

rator widely exploits the vanilla BatchNormal layer to regularize 

he feature distribution of deconvolution, which is prone to make 

he learned distribution of categories focus on the dominant cate- 

ories and ignore other categories, leading to ambiguous synthetic 

mages. (4) Although advanced methods [6,7] exploit the inversion 

o optimize diverse samples and aim to mitigate model collapse, 

hey ignore to further distinguish the discrepancy under the cat- 

gory prior information, which may hinder the synthetic diversity 

nd the effect of distillation. 

To address the above limitations, this paper develops a novel 

earning paradigm, as depicted in Fig. 1 (c), which is conditional 

seudo-supervised contrast for data-free knowledge distillation, 

bbreviated as CPSC-DFKD. The main innovations of CPSC-DFKD 

re three-fold: (1) To utilize the idea of supervised learning, CPSC- 

FKD introduces a conditional generator, which uses conditional 

ategory and random noise as the input of the generator to syn- 

hesize category-specific images. Consequently, the pseudo pairs 

f images with labels could be obtained, which enables student 

nd generator learning in a pseudo-supervised manner. (2) To dis- 

inguish and balance the distribution of different categories of 

amples, CPSC-DFKD improves the modules of the generator by 

ategorical features embedding (CFE) blocks, which connect the 

eatures and categories embedded in the intermediate layers. Con- 

equently, the generator can generate the different distributions 
2 
f different categories by conditional information. (3) To enhance 

he category diversity of synthesized images and the effect of dis- 

illation, CPSC-DFKD proposes to perform pseudo-supervised con- 

rastive learning on the generator. Different from the commonly- 

dopted data augmentation strategies, CPSC-DFKD exerts a unique 

eacher-student structure for image contrastive learning. For a 

iven image, the corresponding representations from the views of 

eacher and student form a positive pair in contrastive learning, 

hile the representations of other images in the same batch pro- 

ide negative signals. Therefore, CPSC-DFKD is empowered by the 

epresentation uniformity of contrastive learning. 

The main contributions of this paper are summarized as fol- 

ows: 

• We propose a learning paradigm to improve DFKD with a con- 

ditional generative adversarial network, which is able to syn- 

thesize category-specific images and promote student learning. 
• We introduce a categorical feature embedding block to effec- 

tively distinguish the distribution of different categories of sam- 

ples, which connect the features and categories embedding in 

the middle layers. 
• To our knowledge, we are the first to attempt to utilize the con- 

dition annotations to supervise the contrast of features repre- 

sentation of teacher and student in DFKD, which aims to opti- 

mize the diversity of synthesized images and improve the effect 

of distillation. 
• Massive experiments are conducted on three mainstream 

benchmark datasets, i.e. , CIFAR-10, CIFAR-100, Tiny-imagenet. 

The results demonstrate the effectiveness of the proposed 

CPSC-DFKD in both improving the student and generator. 

. Related works 

.1. Generative adversarial networks 

GANs [8] establish a min-max game between a discriminator 

nd a generator. The discriminator aims to distinguish generated 

ata from real ones when the generator is dedicated to generat- 

ng more realistic and indistinguishable samples to fool the dis- 

riminator. It has achieved great success in various image gen- 

ration tasks, including image-to-image translation [9,10] , image 

uper-resolution [11,12] , and image edit/inpainting [13,14] . Through 

dversarial training, GANs can synthesize fake images to support 

istillation between teacher and student [4,5] . However, vanilla 

ANs cannot synthesize images with specific categories and usu- 

lly face some problems such as training instability and mode col- 

apse. Therefore, there are many ways to improve the deficiencies 

f GANs, such as Conditional GANs [15] , Wasserstein GNAs [16] , 

tc. Conditional GANs (CGANs) [15] , as another type of GANs, are 

roposed to utilize conditional information to generate images 

ith labels for the discriminator, and they have been drawing at- 

ention as a promising tool for category-conditional image gener- 

tion [17,18] . In this work, we regard CGANs as one component of 

he proposed framework, which considers category-conditional in- 

ormation and synthesizes labeled images. 

.2. Data-free knowledge distillation 

Knowledge distillation (KD) is first proposed by [19] , which 

ims to learn a compact and lightweight student model from 

he pre-trained powerful teacher model. To utilize more forms of 

nowledge to enhance the effect, many approaches have been pro- 

osed. For example, FitNet [20] and AT [21] transfer knowledge of 

ints and attention in the intermediate layers to the student, re- 

pectively. While RKD [22] , AMTML-KD [23] , and RAD [24] distill 

he relation-based knowledge of features, which can further im- 

rove the performance of the student. However, such approaches 
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nly focus on model compression. Currently, privacy preservation 

nd data transmission restrictions are gradually attracting atten- 

ion, which leads to the emergence of research on DFKD. 

DFKD methods incline to exploit a generator to synthesize mas- 

ive samples to support the knowledge distillation learning be- 

ween teacher and student [4,5,25] . Specifically, Chen et al. [4] pro- 

osed the DFAL framework which employs a generator to syn- 

hesize pseudo images and then makes student learn knowledge 

rom teacher. Micaelli et al. [5] exploited adversarial distillation 

o transfer the knowledge (i.e., ZSKT) from teacher to student by 

ullback-Leibler (KL) divergence and spatial attention. And Fang 

t al. [25] proposed the DFAD framework which utilizes the MAE 

oss to fit the output distribution of the teacher. However, this 

ind of method cannot synthesize realistic image and usually suf- 

er from the risk of mode collapse [7] . Different from the above 

ethods, Yin et al. [6] utilized batch normalization statistics (BNS) 

f teacher to normalize the noise, which can effectively synthesize 

ore realistic samples for KD. Similarly, such a trick is also intro- 

uced by DFQ [26] and CMI [7] to optimize the images synthesized 

y the generator. In DFQ, the generator is constrained to produce 

ynthetic images that match the original data distribution by re- 

erring to BNS from the batch normalization layers of teacher. CMI 

lso exploits BNS to incrementally synthesize some new samples 

y the contrastive diversity from a memory bank. This category of 

ethods can synthesize more realistic images to mitigate model 

ollapse and achieve relatively better performance. 

.3. Contrastive learning 

Contrastive Learning has achieved a remarkable achievement in 

ecent years [27–29] . The key to contrastive learning is to learn 

he effective embedding representations of data by deep models. 

ormalized embeddings from the same class are pulled closer to- 

ether, while embeddings from different classes are pushed away. 

o far, there are some representative contrastive learning meth- 

ds. They learn representations by maximizing the agreement be- 

ween different representations of the same data example via a 

ontrastive loss in hyperspace. For example, He et al. [28] pro- 

osed MoCo to exploit contrastive learning as a dictionary look- 

p. Chen et al. [27] proposed a simple framework (i.e., SimCLR), 

hich contrasts the representation without requiring specialized 

rchitectures or a memory bank. Different from the above unsu- 

ervised manners [27,28] , Khosla et al. proposed the SupCL [29] , 

hich introduces the labels for each representation and conducts 

he contrastive learning in a supervised manner. 

Closely related to contrastive learning is the family of losses 

ased on metric distance learning or triplets [30,31] . These losses 

ave been used to learn powerful representations, often in super- 

ised settings, where labels are used to guide the choice of positive 

nd negative pairs. From a new aspect in this paper, we skillfully 

xploit the features of the samples extracted by teachers and stu- 

ents for comparison and utilize contrastive learning under super- 

ised conditions to optimize the generator. 

. Methods 

.1. Preliminaries 

DFKD is an effective paradigm to transfer knowledge from a 

umbersome pre-trained teacher model T (x ; θ ∗
t ) to a lightweight 

tudent model S(x ; θs ) . It works by minimizing the discrepancy D
etween teacher and student under the support of the synthetic 

mage set { ̂ x i | ̂ x i ∈ 

ˆ X } , which expects to achieve a well-trained 

tudent model as follows: 

∗
s = arg min 

θs 

E ˆ x [ D(T ( ̂  x ; θ ∗
t ) ,S( ̂  x ; θs ))] , (1) 
3

here D denotes the discrepancy metric, e.g., KL divergence. T is 

re-trained on a real dataset (x i , y i ) ∈ X with the learned parame- 

er θ ∗
t . The synthetic dataset ˆ X is used in the above equation since 

he real dataset is inaccessible due to privacy protection. Existing 

tudies commonly adopt the vanilla generator to synthesize alter- 

ative samples from noise z ∼ N (0 , 1) for distillation [4,25] . How-

ver, they neglect to distinguish the distribution of different cat- 

gories of samples. This issue is exacerbated when the amount of 

ategories is large, for it is not conducive to generating specific im- 

ges with category diversity. To our investigation, there are very 

ew works that employ a conditional generator for knowledge dis- 

illation, which motivates this paper to propose conditional adver- 

arial distillation. 

Besides, in the DFAD framework, the generator is more prone 

o model collapse due to inadequate optimization [4,5,25] . BNS is 

rimarily introduced in [6] and has also been demonstrated to be 

n effective manner to optimize the generator [7,26] . It works by 

inimizing the distance between the current variance and mean 

f features and those of the pre-trained teacher in each batch nor- 

alization layer, just as follows: 

in 

G 

{ 

E ˆ x 

[ ∑ 

l 

∥∥μl − μl ( ̂  x ) 
∥∥

2 
+ 

∥∥σ 2 
l − σ 2 

l ( ̂  x ) 
∥∥

2 

] } 

, (2) 

here μ and σ represent the mean and variance of BatchNor- 

al, respectively. l denotes the l-th BN layer of the teacher model. 

ith the BNS regularization, the synthetic images are more realis- 

ic, which is beneficial for distillation. 

.2. Category-conditional generator 

The original DFKD only takes random noise as input and ex- 

ects the generator to synthesize more realistic images to cover 

he original images. In contrast, conditional adversarial distillation 

s devised to combine both the random noise ( z ∼ N (0 , 1) ) and the

onditional label set ( { y i | y i ∈ Y, i ∈ [1 , N] } , where N is the count of

ategories), as exhibited in Fig. 2 . The combined representations 

re taken as input to the generator G. Hence, we can control the 

ynthetic images by the label information as conditions. 

However, it is difficult for the generator to distinguish the dis- 

ribution differences between different categories of samples dur- 

ng the min-max optimization. To alleviate this issue, firstly, we 

xploit an improved conditional generator to synthesize category- 

ise samples to support distillation. This is introduced in detail in 

he following. 

Originally, in DCNNs, it is common to exploit a Batch Normal- 

zation (BN) layer to normalize the distribution of features of con- 

olution to reduce the internal covariate shift. Given a mini-batch 

 = 

{
F i,.,.,. 

}N 

i =1 
of N samples, where F i ∈ R 

c×h ×w . BN normalizes the 

eature maps at each layer as follows: 

N (F i,c,h,w 

| γc , βc ) = 

F i,c,w,h − E B [F ., c, ., . ] √ 

Var B [F ., c, ., . ] + ε 
· γc + βc , (3) 

here ε denotes constant for numerical stability, E B and Var B are 

ean and variance of a batch, γc and βc are trainable scalars cor- 

esponding to scale factor and bias, respectively. However, the nor- 

alization of a batch of images has different categories. Theoret- 

cally, the distribution of different categories is dissimilar, so it is 

omehow not meticulous if BN is used directly. It is not conducive 

or generative models to synthesize diverse samples of different 

tyles. 

Inspired by [32,33] , to ensure that the conditional generator can 

roduce samples with diverse categories, we modify the genera- 

or model by introducing categorical features embeddings (CFE) to 

odify the traditional BN layers. Specifically, CFE replaces γc and 

c in Eq. 3 by category-dependent feature maps W y ∈ R 

d×m and 
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Fig. 2. The overall workflow of CPSC-DFKD. A condition generator with CFE layers is exploited to synthesize images with labels for teacher and student by adversarial 

distillation. The CFE layer maps the category with features by rebuilding embedding layers based on BN layers. In the penultimate layer, we map the feature representation 

to a new space and compare the discrepancy under the supervision of category labels. Besides, distilling knowledge from teacher to student in the output layer. 
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Table 1 

Architecture of generator. 

conv_blocks0 FC, Reshape, CFE(Em w , Em b ) 

conv_blocks1 Conv( 3 × 3 , 1) , CFE(Em w , Em b ) , LeakyReLU 

conv_blocks2 Conv ( 3 × 3 , 1) , CFE(Em w , Em b ) , LeakyReLU 

conv_blocks3 Conv( 3 × 3 , 1) , Tanh , CFE(Em w , Em b ) 
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L

 y ∈ R 

d×m . m is the dimension of a category and d is the feature

imension corresponding to the category. The purpose of this im- 

rovement is to create a mapping between categories and features 

nd learn the feature weights of different categories in the adver- 

arial process. The corresponding computational formula is defined 

s follows: 

FE (F i,c,h,w 

| W y i , b y i ) = 

F i,c,w,h − E B [F ., c, ., . ] √ 

Var B [F ., c, ., . ] + ε 
· W y i + b y i , (4) 

here y i ∈ Y indicates the category to which a sample belongs. 

ased on this, the generator could make different image cate- 

ories to learn more different latent distributions and synthesize 

ategory-wise diverse images. They are beneficial for teacher and 

tudent to steadily support the distillation. 

.3. Conditional adversarial distillation 

Adversarial distillation suggests training the model with a min- 

max game. During the stage of distillation training, i.e., minimiza- 

ion stage, the student expects to mimic the teacher and mini- 

ize the discrepancy. During the stage of adversarial training, i.e., 

aximization stage, the generator anticipates generating as many 

eal samples as possible while maximizing the possible discrep- 

ncy for a worst-case scenario. The two training stages are alter- 

ated for convergence. In order to adapt to the optimization of ad- 

ersarial distillation, we introduce a conditional generator network 

(z, y i ) → ( ̂  x i , y i ) , where ˆ x i ∈ X and y i ∈ Y to synthesize the alter-

ative samples with conditional information to support the distil- 

ation, which is given by: 

in 

S 
max 

G 

{
E ( ̂ x ,y ) 

[
D(T ( ̂  x | y ) , S( ̂  x | y ) ]}, (5) 

here ( ̂  x , y ) is the synthetic images ˆ x accompanied by label y . We

mit the subscript ˆ x and y for simplicity. D measures the discrep- 

ncy between T and S , which is commonly implemented by the 

L divergence [7,26] . 

To our investigation, when the number of categories is large, 

pplying l 2 -norm to further constrain the discrepancy between T 
nd S can improve the effect of distillation (as revealed in Table 6 ). 

ecause the KL loss focuses on the distribution of logits, when the 

equence length of the categories is relatively large, the discrep- 

ncy of different categories is not always obvious. Therefore, the 
4

hole discrepancy metric used in the approach is defined as fol- 

ows: 

 IKD = min 

S 
max 

G 

{
E ( ̂ x ,y ) [ D KL (T ( ̂ x | y ) , S( ̂ x | y )) + αR l 2 (T ( ̂ x | y ) , S( ̂ x | y ))] 

}
, 

(6) 

here R l 2 
denotes the logarithmic form of l 2 -norm. α is the hy- 

erparameter to control the regularization loss. 

.4. Conditional category and distribution alignment 

In the scenario of DFKD, conventional studies commonly as- 

ume that there is no exact label for supervision. The prior 

tudy [4] makes an one-hot assumption about the network pre- 

ictions on synthetic images. Differing from this study, we utilize 

he conditional category as the ground truth label for training both 

he generator and the student. For different goals, this approach 

an be divided into two stages: (1) Maximization Stage. Since the 

onditional pseudo labels are randomly initialized, there is some 

eviation between the conditional category and the true sample 

abels. For the teacher model, it already has the ability to discrim- 

nate the differences between different samples. Therefore, we use 

he teacher model to discriminate samples with corresponding la- 

els and minimize the difference between the output distribution 

nd labels. This process forces the generator to generate samples 

hat approximate the true samples which can be received by the 

eacher; (2) Minimization Stage. For the student, the conditional 

abels have been confirmed by the teacher model and thus can be 

sed as real labels. Therefore, cross-entropy losses are adopted to 

ptimize the generator and student, which are given as follows: 

 CE = 

{ 

E ( ̂ x ,y ) [ min G 
1 
n 

∑ N 
i =1 D CE (σ (T ( ̂  x | y )) , y )] if stage (1) , 

E ( ̂ x ,y ) [ min S 
1 
n 

∑ N 
i =1 D CE (σ (S( ̂  x | y )) , y )] if stage (2) , 

(7) 
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here σ is the softmax function, D CE (·) is cross entropy, stage (1) 

enotes the maximization stage, and stage (2) denotes the mini- 

ization stage. It is worth noting that the generator is optimized 

y the teacher but not by the student. This is intuitive since the 

eacher is well trained, being more stable and better to reflect the 

eal data distributions than the student. 

.5. Conditional pseudo-supervised contrast 

Contrastive learning (CL) usually employs a model to extract 

eature representation and measure differences by pulling closer 

imilar categories and pushing away dissimilar categories [27,29] . 

n DFKD, CL is first introduced in the study [7] , which utilizes 

he teacher to extract local and global representations of synthetic 

mages. Different from the study [7] , in our learning paradigm, 

oth the teacher and the student are employed to extract different 

eature representations of the same synthetic image, respectively, 

hen compare the representations under the supervision of a con- 

itional category. Moreover, CL is performed to benefit the training 

f the generator. Through making the representations of different 

mages to be uniformly distributed, it enhances the generator’s ca- 

ability of generating diverse images. 

Specifically, for a batch of synthesized images { ( ̂  x i , y i ) } N i =1 
,

here N is the batch size, the teacher and the student gener- 

te two representations for an image ˆ x i by z i s = f s ( ̂  x i | y i ) and z i t =
f t ( ̂  x i | y i ) . f t (·) is representation network of the teacher T without

ast layer. And it is analogous to f s (·) of the student. We assume

hat the image representation from the teacher as the anchor sam- 

le (e.g., z i t ) and the corresponding image representation from the 

tudent (e.g., z i s ) as a positive one. The rest of the N − 1 image rep-

esentations from the student in the same batch are taken as neg- 

tive ones. Consequently, we define the contrastive learning loss as 

ollows: 

 SCL = E ( ̂ x ,y ) 

{ 

max 
G 

[ 

N ∑ 

i =1 

−1 ∣∣P(i ) 
∣∣ ∑ 

y i ∈P(i ) 

log 
exp (z i t · z i s /τ ) ∑ N 

j,i � = j exp (z i t · z j s /τ ) 

] } 

, 

(8) 

here the · sign denotes the inner (dot) product. i and j are the 

ndices of the samples in a batch. τ denotes a temperature param- 

ter, P(i ) ≡
{∀ y i ∈ Y : i ∈ N 

}
is the set of conditional annotations 

orresponding to positive samples, which guides the sum of same 

ategories in a batch. |P(i ) | is the cardinality. Since this loss could

aximize the representations from different categories, it encour- 

ges the generator to closely aligned distribution to all entries from 

he same class. 

.6. Objective losses for CPSC-DFKD 

In CPSC-DFKD, the major aim is to learn the student and the 

enerator based on a well-trained teacher. The objective loss for 

he student is given as follows: 

in 

S 
L IKD + ηL CE . (9) 

hus the student is trained to simultaneously mimic the output of 

he teacher and the conditional labels. 

For the generator, we combine the L IKD , L CE , L SCL , and L BN 

similar as Eq. 2 ) losses. Formally, the total objective loss for op- 

imizing the generator is as follows: 

in 

G 
−L IKD + βL BN − γL SCL + ηL CE , (10) 

here β , γ , η are the hyperparameters to control the relative ef- 

ect of each component. Compared to the objective of the stu- 

ent, the generator’s objective additionally contains the contrastive 

earning loss and the BNS regularization loss. As aforementioned, 
5 
he contrastive learning loss encourages the generator to syn- 

hesize diverse images. And the intuition behind using the BNS 

oss is to make the synthetic image more realistic. We detail 

he whole training pipeline in Algorithm 1 , which mainly con- 

ists of the alternated student training stage and generator training 

tage. 

lgorithm 1 Training Algorithm for CPSC-DFKD. 

nput : A pre-trianed teacher T on real data, generator G and stu- 

ent S . 

utput : A lightweight student S , and a conditional generator 

. 

1: for number of iterations do 

2: // Minimization Stage 

3: for k steps iterations do 

4: Generate random noise z ∼ N (0 , 1) and random cate- 

gories condition y ∼ [0 , N − 1 ] ; 

5: Synthesize categorical image ˆ x = G(z| y ) ; 
6: Calculate distribution discrepancy by L CE and L IKD ; 

7: Froze G and T , update S byEq. 9 ; 

8: end for 

9: // Maximization Stage 

0: Generate random noise z ∼ N (0 , 1) and random categories 

condition y ∼ [0 , N − 1 ] ; 

11: Synthesize categorical image ˆ x = G(z| y ) ; 
2: Evaluate distribution discrepancy by L CE and L IKD ; 

3: Optimize diversity of the generator by L BNS and L SCL ; 

4: Froze S and T , update G byEq. 10. 

5: end for 

. Experiments 

.1. Experimental setup 

Datasets. We evaluate our algorithm on the image classification 

ask on three widely used datasets, i.e., CIFAR-10, CIFAR-100, and 

iny-ImageNet. The CIFAR-10 and CIFAR-100 datasets [34] are com- 

osed of 50,0 0 0 training and 10,0 0 0 testing images with 10 and

00 classes, respectively. And the size of each image is 32 × 32. 

he TinyImageNet dataset [35] contains 10 0,0 0 0 and 10,0 0 0 im- 

ges from 200 object classes with their size 64 × 64 for training 

nd validation, respectively. For both datasets, we perform the pre- 

rocessing of subtracting means and dividing by standard devia- 

ions in each RGB channel and employ the standard data augmen- 

ation techniques such as random cropping with zero padding and 

orizontal flipping. 

Models. In our work, ResNet-34 [36] , ResNet-18 [36] , VGG- 

1 [37] , and Wide ResNet-40-2 [38] are employed as the cum- 

ersome teacher networks with pre-trained parameters for the 

hree benchmark datasets, and other five shallow networks, i.e. , 

esNet-18 [36] , MobileNet-v2 [39] , WRN-16-2 [38] , and WRN-40- 

 [38] WRN-16-1 [38] , are utilized as the students. 

Generator architecture. The generator in our approach is im- 

lemented by improved vanilla GANs, which synthesize images 

or CIFAR and Tiny-ImageNet, respectively. The main architecture 

f our generators is shown in Table 1 , where Conv(3 × 3) de- 

otes the 3 × 3 convolution kernels with stride 1 × 1 and the 

FE(Em w 

, Em b ) layer denotes the categorical features embeddings 

ayer with category-dependent feature maps. 

.2. Implementation details 

For fair comparisons with the other KD methods, we follow the 

MI [7] implementation environments using PyTorch. All the mod- 

ls are trained on NVIDIA 2080Ti GPUs with 12G memory. We train 
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Table 2 

Comparison of different data-free distillation approaches on CIFAR-10, CIFAR-100, and Tiny-ImageNet. 

Datasets CIFAR-10 CIFAR-100 Tiny-ImageNet 

Teacher ResNet-34 VGG-11 WRN-40-2 ResNet-34 VGG-11 WRN-40-2 ResNet-34 VGG-11 WRN-40-2 

FLOPs 74.9M 272.5M 329.0M 75.0M 272.9M 329.0M 300.0M 732.0M 1.3G 

Params 21.3M 128.8M 2.2M 21.3M 129.2M 2.3M 21.4M 129.6M 2.3M 

Acc. 95.70 92.25 94.87 78.05 71.32 75.83 67.21 53.67 60.65 

Student ResNet-18 ResNet-18 WRN-16-2 ResNet-18 ResNet-18 WRN-16-2 ResNet-18 ResNet-18 WRN-16-2 

FLOPs 37.1M 37.1M 101.6M 37.2M 37.2M 101.6M 148.6M 148.6M 406.4M 

Params 11.2M 11.2M 0.7M 11.2M 11.2M 0.7M 11.3M 11.3M 0.7M 

Acc. 95.35 95.35 93.95 77.10 77.10 69.87 64.53 64.53 56.44 

DFAL [4] 92.22 81.10 81.55 74.47 57.29 40.00 N/A N/A N/A 

ZSKT [5] 93.32 89.46 89.66 67.74 34.72 28.44 N/A N/A N/A 

DFAD [25] 93.30 90.90 91.42 67.73 55.93 35.01 57.34 38.30 33.07 

ADI [6] 93.26 90.36 89.72 61.32 54.13 61.34 60.21 46.67 45.22 

DFQ [26] 94.61 90.84 92.01 77.01 68.32 59.01 62.44 48.33 47.63 

CMI [7] 94.81 91.13 92.52 77.04 70.56 68.72 63.91 51.41 51.64 

Ours 95.33 92.16 93.35 77.39 71.56 69.03 64.57 53.25 53.72 
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he student with warm-up and optimize the parameters by the 

GD optimizer with a momentum of 0.9, a batch size of 512 as de- 

ault for CIFAR-10 and CIFAR-100, while the batch size of 256 and 

4 for the Tiny-ImageNet and ImageNet, and the initial learning 

ate of student starts at 0.1 with a weight decay of 5 ×10 −4 . We

urther use cosine annealing to update the learning rate within the 

otal 600 epochs. However, if the batch size is too large, it will con- 

ume more memory, thus we utilize the mixed precision of float- 

6 to save memory while speeding up the training. All the student 

odels of our experiments are trained from scratch and evaluated 

y top-1 accuracy. We exploit the full-convolutional generator fol- 

owing the architecture of GANs modified by replacing each BN 

ayer with the categorical features embeddings layer. Adam [40] is 

dopted to optimize the generator with an initial learning rate of 

 × 10 −3 . The learning rate of the generator is decayed by a fac- 

or of 10 at the 50-th and 150-th epochs. To obtain the pre-trained 

eacher models, we train the teacher from scratch on each origi- 

al dataset. In order to facilitate comparison, we also utilize some 

re-trained teacher models released by [7] . In the distillation stage, 

ll the synthetic images have the same scale as the original input 

mages in the pre-trained phase. 

.3. Comparison of DFKD methods 

As exhibited in Table 2 , we compare the proposed learning 

aradigm with the other representative approaches for data-free 

nowledge distillation, including DAFL [4] , ZSKT [5] , DFQ [26] , 

FAD [25] , ADI [6] , and CMI [7] . The results are evaluated on

he three widely used datasets with different scales, i.e., CIFAR-10, 

IFAR-100, and Tiny-ImageNet. The first two rows of the table de- 

ict the performance of the corresponding teachers and students 

rained on the original real datasets from scratch, which are used 

s the reference. It can be concluded from the table that DFKD can 

chieve model compression and computation acceleration without 

educing model performance. For example, WRN-40-2 with WRN- 

6-2 can achieve more than 3 × compression and acceleration on 

ll datasets. 

Basically speaking, the baselines could be divided into two cat- 

gories. (1) DAFL, ZSKT, and DFAD mainly imitate the teacher by 

educing the discrepancy in the output layer. Due to the limited di- 

ersity of synthetic images, it is apparent that they are inclined to 

uffer from model collapse, as shown in the first row of Fig. 4 . (2)

he other category of approaches, i.e., ADI, DFQ, and CMI, all uti- 

ize the pre-trained BNS to regularize the features of the teacher 

nd student. Therefore, this kind of approach is able to synthe- 

ize more realistic images with better diversity for distillation, as 
6 
hown in the second row of Fig. 4 . The proposed CPSC-DFKD em- 

loys the category-conditional generator to synthesize more di- 

erse images, which performs better than the other baselines on 

he three datasets in most cases. Besides, in the distillation stage, 

ith the improved distillation and pseudo-supervision strategies, 

ur approach can outperform the other baselines on the three 

atasets in most cases. For example, on CIFAR-10 and CIFAR-100 

atasets, CPSC-DFKD improves the other baselines by 0.8 and 0.5 

n average, respectively. On the Tiny-ImageNet dataset, CPSC-DFKD 

an outperform the other baselines by 1.5 on average. This proves 

hat the conditional category method we introduced can success- 

ully improve the effect of the model. 

In the three group experiments, using VGG as the teacher 

odel can significantly outperform the others. The reason might 

e attributed to the fact that the original performance of stu- 

ent (i.e., ResNet-18) is higher than teacher (i.e., VGG-11), there- 

ore, the student can further improve, compared with the other 

wo groups. Besides, since we introduce the condition category as 

he pseudo supervision, the student model can be trained under 

he supervision of the pseudo labels. Therefore, compared to the 

ther baselines, ResNet-18 (VGG-11) can even outperform the per- 

ormance of the teacher on the CIFAR-100 dataset. 

Besides, to accommodate the contrastive learning of features 

n the penultimate layer between heterogeneous models, we have 

o address the dilemma of feature dimensional mismatch between 

he teacher and the student. For example, the feature dimension 

xtracted by WRN-40-2 is 128, while the dimension extracted by 

RN-40-1 is 64. As aforementioned, we introduce the Adapter

odule which exploits the multi-layer perceptron with two hid- 

en layers to map the feature dimension of the student to match 

he teacher. 

As indicated in Table 3 , exploiting WRN-40-2 and WRN-40-1 

n both CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, our pro- 

osed CPSC-DFKD approach can also outperform the advanced ap- 

roach by 0.87%, 0.26%, 0.97%, while the similar improvements are 

lso performed by ResNet-18 and MobileNet-v2, proving that CPSC- 

FKD is flexible to be adapted to different model architectures 

ith the advantage of the Adapter module. 

.4. Ablation study 

.4.1. Contribution of loss 

The losses proposed in our approach are L SCL , L CE , and L IKD ,

s revealed in Eq. 9 and 10 . To investigate the effect of each loss,

e conduct an ablation study on CIFAR-10 (using ResNet-34 and 

esNet-18), CIFAR-100 (using VGG-11 and ResNet-18), and Tiny- 
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Table 3 

Performance comparison with heterogeneous teacher and student models. 

Datasets T. S. DAFL [4] ZSKT [5] DFAD [25] ADI [6] DFQ [26] CMI [7] Ours 

WRN-40-2 (T.) and WRN-40-1 (S.) 

CIFAR-10 94.87 93.95 81.55 89.66 89.96 89.72 92.01 92.52 93.39 

CIFAR-100 75.83 72.19 34.66 29.73 58.47 61.33 61.92 68.88 69.14 

Tiny-ImageNet 60.65 56.90 N/A N/A 34.03 45.90 49.37 51.16 52.13 

ResNet-18 (T.) and MobileNet-v2 (S.) 

CIFAR-10 95.35 90.98 80.12 84.45 85.73 86.81 87.67 88.41 89.63 

CIFAR-100 77.10 68.38 47.81 46.65 48.31 51.74 55.53 59.71 62.34 

Tiny-ImageNet 64.53 55.06 N/A N/A 35.61 41.83 44.28 47.85 49.63 

Table 4 

Effect of different components of CPSC-DFKD. 

L IKD L SCL L CE CIFAR-10 CIFAR-100 Tiny-ImageNet 

92.44 68.09 49.63 

� 94.03 69.94 51.04 

� 94.57 70.21 51.27 

� 93.77 68.53 50.82 

� � 95.16 70.40 52.33 

� � 95.06 70.07 53.06 

� � � 95.33 71.56 53.72 

Table 5 

Comparison of different CFE layers. 

Generator Layer CIFAR-10 CIFAR-100 Tiny-ImageNet 

w/o CFE 94.79 76.32 52.33 

w/ 3-layer CFE 95.01 76.74 53.04 

w/ full-layer CFE 95.33 77.39 53.72 
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Table 6 

Performance of each component in improved distillation. 

Method CIFAR-10 CIFAR-100 Tiny-ImageNet Average 

D KL 90.04 66.34 45.08 67.15 

R l 2 91.41 67.20 47.35 68.65 

L IKD 92.29 67.73 48.83 69.62 
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mageNet (using WRN-40-2 and WRN-16-2). The detailed results 

re shown in Table 4 , where we use � to denote the correspond- 

ng loss used in training CPSC-DFKD. 

As you can see, the first row shows our baseline accuracy on 

IFAR-10, CIFAR-100, and Tiny-ImageNet of 92.44%, 68.09%, and 

9.63%, respectively, which exploits the D KL to optimize the stu- 

ent while optimizing the generator by the L BN − D KL loss. In the 

econd to fourth rows of the table are each of our methods com- 

ined with baseline loss separately, and it can be seen that our 

ethods have different boosts on each of the two datasets. e.g., 

 SCL can boost the baseline to 94.57%, 70.21%, and 51.27%, respec- 

ively, which demonstrates that an abundant and diverse sample 

s beneficial for enhancing the generalization of the model. Fur- 

hermore, if we combine L IKD with any other two losses, the per- 

ormance is largely improved. This shows the necessity of fusing 

ultiple losses. We also compare their performance with the full 

pproach and observe that all of the three variants are inferior to 

t, demonstrating that L SCL , L CE , and L IKD contribute positively to 

he final performance. 

.4.2. Contribution of components in generator 

Our approach leverages CFE to establish a mapping between 

he conditional category and the corresponding category distri- 

ution. Throughout the training process, the embedding layers of 

FE acquire knowledge about the distribution information from the 

eacher, such as mean and variance, for each distinct category. To 

alidate the efficacy of our approach, we conducted an additional 

tudy utilizing ResNet34 and ResNet-18 models. The experimental 

esults are shown in Table 5 . As shown in the first row, when we

dopt the standard BatchNormal layer instead of CFE to normal- 

ze the features for synthesizing images, the classification accuracy 

s 94.79%, 76.32%, and 52.33% on CIFAR-10, CIFAR-100, and Tiny- 

mageNet, respectively. Compared with the final version 95.33%, 
7 
7.39%, and 53.72% of CPSC-DFKD, its performance is noticeably 

orse. Moreover, we employ the generator with 3-layer CFE to 

rain CPSC-DFKD. The results show the performance is improved 

s compared to the former method, but still underperforms the fi- 

al version of CPSC-DFKD. This suggests that using full-layer CFE to 

enerate different distributions of category-wise features is benefi- 

ial for distillation by the teacher. 

.4.3. Analysis of improved distillation 

In previous distillation [7,26] , the teacher and the student 

ainly rely on KL divergence. According to our study, combining 

L with L2 regularization can effectively im prove the distillation 

ffect. To verify the effectiveness of knowledge transfer, we con- 

uct an ablation study (with WRN-40-2 and WRN-16-2) on three 

atasets. First, we only utilize the D KL loss to transfer the knowl- 

dge and achieve the basic accuracy of 90.04%, 66.34%, and 45.08% 

n three datasets, respectively. Then, we exploit the R l 2 
loss with- 

ut other strategies to promote the student mimic the distribu- 

ion of teacher. As shown in Table 6 , using R l 2 
can outperform 

sing D KL notably. Finally, we combine the two strategies for train- 

ng and find that the average experimental performance can be 

mproved by about 2.5%. We argue that the KL loss focuses on 

he logit matching. Nevertheless, the distribution between differ- 

nt categories is not always significant. Therefore, some approaches 

ay introduce the temperature to soften the logits to mine the 

ark knowledge (i.e., vanilla KD). While L2 loss can effectively scale 

nd shrink the category differences, it is more conducive to distin- 

uishing the differences between different categories and optimiz- 

ng the model. 

.4.4. Analysis of hyperparameters 

In the proposed method, there are four hyperparameters to 

ontrol the whole optimization pipeline. In this part, we utilize 

esNet-34 and ResNet-18 on the middle-size dataset CIFAR-100 to 

nalyze these hyperparameters. We vary one hyperparameter and 

x the other three hyperparameters We first change the hyperpa- 

ameter α according to {0, 0.1, 0.5, 1, 3, 5, 7, 10, 15}, while the 

ther three hyperparameters are set to 1. It can be found when α
akes the range of { 3 , 7 } , the performance is better, which is higher

han the vanilla KD approach. Then we analyze β by tuning it ac- 

ording to {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.5, 2, 5}. As can be seen,

hen β is in the range of { 0 . 7 , 2 } , better results could be achieved.

hen we analyze the other two hyperparameter losses which are 
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Fig. 3. Effect of α, β , γ and η on the CIFAR-100 dataset. 
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upervised by pseudo labels. Similarly, we can observe that when 

hey take suitable value ranges, better performance is achieved. 

.5. Visualization analysis and evaluation 

.5.1. Analysis of generator 

In DFKD task, the generator is commonly exploited to support 

he distillation framework, which can synthesize the alternative 

amples. However, the generator is prone to model collapse in 

he training process, making the model unable to generate diverse 

amples. This will affect the effect of the distillation [7] . Therefore, 

n this part, we evaluate the quality of synthetic samples from two 

imensions: visualization effect and generated sample score. To an- 

lyze the effect of our generator, we visualize the synthetic images 

nd compare them with other methods on the CIFAR-10 and CIFAR- 

00 datasets, respectively. In Fig. 4 , we choose four categories ( dog, 

or se , deer , tr unk ) of images synthesized by different approaches

n the CIFAR-10 dataset. The first column mainly shows the images 

ynthesized by the first category of the DFKD methods ( i.e. , DAFL, 

SKT, and DFAD). Although the classification performance of these 

ethods is not so bad, it is obvious that the synthetic images are 

o blurry that one can hardly distinguish the outline of objects. The 

enerators of these approaches incur model collapse due to inad- 

quate optimization. By contrast, the other category of approaches 

 i.e. , ADI, DFQ, and CMI) benefit from BNS and respective optimiza- 

ion, and thus they could synthesize more realistic and diverse im- 

ges. Likewise, with a conditional generator and corresponding op- 

imization, our approach can synthesize more realistic images as 
8 
ell. This is revealed by Fig. 4 where we can recognize different 

bjects with various shapes. Besides, we visualize the synthetic im- 

ges of CIFAR-100 in Fig. 5 . We can find the synthesis effect of DFQ

nd CMI is relatively obscure. This might be because BN tends to 

earn some dominant categories without guiding them by category 

riors, which may result in ambiguous synthetic images. For ex- 

mple, the abundant synthetic images by DFQ take the keyboard 

ncorrectly as the background. We randomly select the generated 

mages by the second category of the approaches. For the synthetic 

mages by CPSC-DFKD, it is clear to recognize different categories 

i.e., trees , f lowers , people ) with different shapes, which illustrates 

he ability of our method to distinguish the difference in distribu- 

ion between different categories. 

For synthesized images, the Inception Score (IS) [41] and 

rechet Inception Distance (FID) score [42] are commonly used 

o evaluate the quality and diversity. However, the IS compares 

he synthesized images with the distribution of the Inception pre- 

rained model on ImageNet [43] , which may lead to incorrect eval- 

ation. While the FID compares the synthesized images and the 

riginal images by Inception, which is more suitable for our exper- 

ments, the formula is as follows: 

ID (x, ̂  x ) = ‖ μx − μ ˆ x ‖ + T r( 
∑ 

x 

+ 

∑ 

ˆ x 

−2( 
∑ 

x 

∑ 

ˆ x 

) 
1 
2 ) (11) 

here (x, ̂  x ) donates the original images and the images synthe- 

ized by GANs, (μx , 
∑ 

x ) and (μ ˆ x , 
∑ 

ˆ x ) are the mean and covari- 

nce statistics of original images and synthesize images. It is worth 

entioning that a lower FID means that the generated distribution 
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Fig. 4. Visualization of synthetic category-specific diverse images from WRN40-2 to WRN16-1 by different approaches on CIFAR-10. 

Fig. 5. Visualization for synthetic samples from WRN-40-2 to WRN-16-1 by different approaches on CIFAR-100. 

Table 7 

Evaluation of different approaches w.r.t. FID. 

Methods CIFAR-10 CIFAR-100 

ADI [6] 93.42 98.54 

DFQ [26] 82.36 89.72 

CMI [7] 77.93 84.34 

Our 80.97 79.99 
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s closer to the real image distribution. To this end, we utilize the 

ID score as the evaluation metric to compare our approach with 

MI, DFQ, and ADI. 

Specifically, the 2048-dimensional features of the last pool layer 

f the inception net are extracted, which contain the semantic 

nformation of the synthetic images to a certain extent. Conse- 

uently, we calculate the distance to estimate the quality image. 

s can be seen from Table 7 , our performance is a bit lower than

MI on CIFAR-10 but outperforms ADI and DFQ. Algouth, the per- 

ormance of synthetic images on CIFAR-10 is not very satisfactory, 

hanks to the improved knowledge distillation loss and pseudo su- 

ervision learning, our effect of distillation still outperforms the 

ther methods. On the CIFAR-100 dataset, our approach achieves 

tate-of-the-art performance, which means that the images synthe- 

ized by our method are more diverse than others. Therefore, the 

istillation effect on the CIFAR-100 dataset is quite remarkable. We 

an find that when the category is large, the synthetic images are 

ore effective, which demonstrates that the improved CFE layer in 

he generator can effectively learn different kinds of distribution 

nformation. 

.6. Discussion about other compression methods 

Essentially, our approach belongs to DFKD which is a special 

cenario in model compression. It can be used to address privacy 

rotection and transmission limitations. Currently, there are some 
9 
ther mainstream methods of model compression, such as quan- 

ization [44–46] , pruning [47,48] and so on. However, not every 

ompression method works well in data-free scenarios. For this 

eason, we make a brief discussion as follows: 

Pruning v.s. Distillation. Pruning [47,48] is a technique aimed 

t reducing the size and complexity of neural networks by re- 

oving network components that contribute little to the overall 

erformance. This can be achieved through non-structure pruning 

uch as weight and neuron pruning, or structure pruning including 

lter-wise [48] , channel-wise [49] , stripe-wise pruning [50] . How- 

ver, pruning can potentially destroy the original network structure 

nd hence requires iterative fine-tuning to maintain network per- 

ormance. Additionally, the sparse rate, or pruning rate, needs to 

e considered in pruning. 

In comparison, distillation is a method that focuses on transfer- 

ing knowledge from a larger and more complex model (teacher) 

o a smaller and simpler one (student), without breaking the net- 

ork structure or requiring extensive training searches. As such, 

istillation is generally considered more convenient than pruning, 

hich often relies on access to data for fine-tuning purposes and 

ay not be applicable in data-free scenarios. 

Quantization v.s. Distillation. Model quantization [44] is es- 

entially a technique for function mapping. It can be categorized 

nto linear quantization and nonlinear quantization, depending on 

hether the mapping function is linear or not. Linear quantization, 

or instance, uses low-bit precision (e.g., 8-bit) [44] instead of high- 

it precision (e.g., 32-bit). One of the most effective quantization 

ethods for achieving high compression rates is binary quantiza- 

ion [45,46] , also known as 1-bit quantization. This unique method 

nvolves replacing the original float-32 values of weights or acti- 

ation functions in the neural network with 1-bit values of either 

 (-1) or +1. Binary quantization significantly reduces model size 

nd speeds up computation. However, the downside of this ap- 

roach is that it often leads to a decrease in network performance, 

articularly on large datasets. To address this challenge, distilla- 
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ion can be employed [51] , which not only compresses the smaller 

odel but also improves the training effectiveness of the overall 

odel. Besides, quantization can also be combined with data-free 

istillation [26,52,53] . 

Other approaches. In addition, low-rank approximation [54–

6] is a prevalent technique for achieving compression by sparsi- 

ying the convolutional kernel matrix by merging dimensions and 

mposing low-rank constraints. For example, singular value de- 

omposition (SVD) [54] commonly exploits two-dimensional ma- 

rix operations, while high-dimensional matrix operations often in- 

olve CP decomposition [55] , Tucker decomposition [56] , etc. How- 

ver, the decline in popularity of low-rank approximation can be 

ttributed in part to the growing use of 1 × 1 convolutions in neu- 

al networks. The small size of these convolutions makes them 

ifficult to accelerate and compress using matrix decomposition 

ethods, which undermines the effectiveness of low-rank approx- 

mation. Furthermore, the performance of low-rank approximation 

ends to deteriorate when applied to larger networks, further lim- 

ting its appeal. Distillation, by contrast, is not limited to the struc- 

ure of the model and is gaining popularity because of its flexibil- 

ty and efficiency. To the best of our knowledge, there has been a 

ack of research on the integration of low-rank approximation and 

ata-free distillation techniques. This area presents promising op- 

ortunities for further exploration and investigation. 

. Conclusion 

In this work, we have proposed Conditional Pseudo-Supervised 

ontrast for data-free knowledge distillation (CPSC-DFKD). Thanks 

o three features, CPSC-DFKD enables better learning for both the 

tudent and the generator: (1) exploiting an improved conditional 

enerator to synthesize the category-specific images for pseudo- 

upervised learning; (2) introducing an improved categorical fea- 

ure embedding blocks to distinguish the different categorical dis- 

ribution; (3) proposing contrastive learning to achieve diversity of 

ynthesized images. Extensive experiments have been conducted 

n three datasets and demonstrated that CPSC-DFKD can not only 

ynthesize more categorical diverse images for the generator but 

lso improve the performance of data-free knowledge distillation 

or the student. Actually, our method can synthesize images with 

rbitrary data size by category. Therefore, it can be further applied 

o the scenarios with category imbalance, such as long-tail learn- 

ng. In addition, some other tasks such as semantic segmentation 

re also worthy of further exploration. 

.1. Limitations 

However, in practice, the proposed approach might have the 

ollowing limitations: 

Heavy computation cost . Although our method and existing 

ethods have solved simple classification tasks, the training mod- 

ls from scratch might become difficult and costly when encoun- 

ering complex tasks (e.g., fine-grained vision classification, seman- 

ic segmentation, etc.). 

Quality of the synthetic images . Although the generator can 

estore low-resolution images, limited by the generator’s perfor- 

ance, the synthetic samples with high resolution are still a lit- 

le ambiguous. For some tasks that require high resolution, such as 

ne-grained vision classification challenges, it may bring adverse 

ffects. 

Non-convolution Networks . In our approach, BNS is a regular- 

zation item for optimizing synthetic images, since the distribution 

nformation (i.e., mean and variance) of BN has been pre-defined 

nd stored in the parameters of the model during the pre-training 

rocess. Therefore, it can be exploited in inversion and optimiza- 

ion tasks. However, in some non-convolution networks such as 
10 
ransformer networks, the layer normalization is used, which does 

ot contain distribution information. As such, they may be less ef- 

ective in DFKD. 

.2. Feature work 

We suggest some future work to solve the limitations explained 

bove: 

Improve distillation efficiency . In addition to the training of 

FKD by pre-training and fine-tuning, we suggest the follow- 

ng two aspects to improve the training efficiency of the model. 

irstly, for the student model, the different knowledge forms of the 

eacher model from the intermediate layers, such as relationship 

nd attention, etc., can be comprehensively utilized to improve the 

istillation efficiency of the model. Second, for the generator, the 

odel can be improved by optimizing the generation process, such 

s extracting knowledge from previously synthesized images. 

Improve synthetic image quality . For complex tasks, the qual- 

ty of synthetic images is crucial for downstream distillation. 

e recommend combining super-resolution learning or image 

enoising-related domain knowledge to improve image quality. 

his could make the proposed method robust in more challenging 

cenarios. 

Other optimization information . For the non-convolution net- 

orks, we consider combining the decoder architecture with other 

ptimizations such as gradient information to benefit synthetic im- 

ges. This might be beneficial for boundary fitting for the studied 

ask. 
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