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Abstract—The proliferation of location-aware social networks
(LSNs) has facilitated the researches of user mobility modeling
and check-in prediction, thereby benefiting various downstream
applications like precision marketing and urban management.
Most of existing studies only focus on predicting the spatial
aspect of check-ins, whereas the joint inference of the spatial
and temporal aspects more fits the real application scenarios.
Moreover, although social relations have been extensively studied
in recommender system, only a few efforts have been observed
in the next check-in location prediction, leaving room for further
improvement. In this paper, we study the next check-in inference
problem which demands the joint inference of the next check-
in location (Where) and time (When) for a target user (Who).
We devise a model named ARNPP-GAT, which combines an
attention-based recurrent neural point process (ARNPP) with
a graph attention networks (GAT). The core technical insight
of ARNPP-GAT is to integrate user long-term representation
learning, short-term behavior modeling, and temporal point
process into a unified architecture. Specifically, ARNPP-GAT
first leverages graph attention networks to learn the long-term
representation of users by encoding their social relations. More
importantly, the attention-based recurrent neural point process
endows the model with the capability of characterizing the effects
of past check-in events and performing multi-task learning to
yield the next check-in time and location prediction. Empirical
results on two real-world datasets demonstrate ARNPP-GAT
is superior compared with several competitors, validating the
contributions of multi-task learning and social relation modeling.

Index Terms—multi-task learning, check-in prediction, deep
recurrent modeling, temporal point process, graph attention
networks

I. INTRODUCTION

The rapid development of mobile communication tech-
nology facilitates users to share their real-time location in
location-aware social networks (LSNs) with their friends. This
trend significantly promotes the growth of LSNs and generates
a huge amount of user spatio-temporal trajectories. Under
this background, user mobility modeling and inference has
incurred a wide spectrum of industrial applications, including
urban planning, location-aware recommendation, and targeted
marketing, to name a few. Consequently, a lot of research

Manuscript received xx; revised xxx; accepted xxx. Date of publication xxx;
date of current version xxx. This work was supported in part by the National
Natural Science Foundation of China (Grant 61702190 and Grant U1609220)
and in part by the foundation of Key Laboratory of Artificial Intelligence,
Ministry of Education, P.R. China. (Corresponding author: Wei Zhang.)

W. Liang is with the School of Computer Science and Techonol-
ogy, East China Normal University, Shanghai 200062, China (e-mail:
51174500033@stu.ecnu.edu.cn).

W. Zhang is with the School of Computer Science and Technology, East
China Normal University, Shanghai 200062, China, and also with the MOE
Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai
200240, China (e-mail: zhangwei.thu2011@gmail.com).

attention has bee paid to this domain. In the literature, one
direction aims to recommend all the locations a target user
will visit in the future [46], [47], and another direction focused
on predicting a user’s next check-in location [4], [49]. In
this paper, we address the latter perspective, which is more
coincident with the sequential nature of user mobility.

Most of existing studies in this regard optimize their models
to solely estimate check-in locations [3], [4], [11], [12] or
just regard check-in time information as an additional type
of model input [10], [20], [23], [49]. However, these studies
overlook the utilization of the temporal signal contained in
user spatio-temporal trajectories as another supervisory signal
to benefit model optimization. As such, how to simultaneously
utilize these two aspects of information to guide the model
learning is critical for effective user mobility modeling, es-
pecially considering the sparsity nature of check-in data in
LSNs [27] (the sparsity of the adopted datasets is shown
in Table I). In addition to the above consideration, another
manner to alleviate the sparsity issue is to leverage social
relations among users. This is because friends tend to affect
users’ decisions and behaviors to some extent [22], thus
preference propagation among users is feasible to enhance the
understanding of the users with sparse behaviors.

Inspired by the perspective of multi-task learning [9], [50],
we explore the problem of predicting where a target user
will visit next and at what time, based on his spatio-temporal
trajectory up to now. The most relevant study is RMTPP [7],
which leverages point process [8] to model event temporal
dynamics and deep recurrent neural networks (RNNs) [14] to
predict which event will happen. However, two main issues
of RMTPP still remain unresolved. 1) RMTPP employs deep
sequential model to learn from users’ recent check-ins to
represent their recent dynamic preference, yet users’ static and
long-term preference is overlooked, which might affect the
accurate user behavior modeling. 2) The conditional intensity
function proposed in RMTPP only uses the most recent hidden
representation of users’ historical check-in events, simply
inheriting the idea of the standard point process. Actually,
more powerful Hawkes process [8] exists, which characterizes
the intensity function by explicitly capturing the effect of past
events on the future event, not limited to the most recent one.

To address the above issues in the multi-task learning for
next check-in time and location inference, we develop a model
named ARNPP-GAT, which combines an attention-based re-
current neural point process with graph attention networks,
a natural extension of RMTPP. Specifically, ARNPP-GAT
divides representations of users into two categories: long-term
preference and short-term preference. Long-term preference

https://orcid.org/0000-0001-6763-8146


JOURNAL OF IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, XXXX 2

is learned by encoding social relations with graph attention
networks [33], while short-term preference is revealed in the
sequential modeling of users’ recent check-in behaviors. The
blending of long-term and short-term representations benefits
the next check-in inference (issue 1). Moreover, temporal point
process (TPP) is utilized to capture both the continuity of time
information associated with spatio-temporal trajectories. Ben-
efiting from this, multi-task learning w.r.t. time and location
inference could be performed. To explicitly quantify the effects
of past check-in events, attention mechanism is used to directly
associate them with the current conditional intensity function
of TPP (issue 2).

In a nutshell, we summarize the main contributions of this
paper as follows:
• We address the user mobility modeling from the multi-

task perspective and propose a novel model named
ARNPP-GAT. To the best of our knowledge, ARNPP-
GAT is the first to seamlessly combine user representation
learning, deep recurrent modeling, and point process into
a unified model.
• ARNPP-GAT introduces an attention based method to

quantify the effect of past check-in events in the con-
ditional intensity function for deep recurrent modeling,
and combines graph attention networks to help learn user
long-term representations.
• Extensive experiments on two real datasets show that the

proposed model has consistently better performance than
several strong competitors for both tasks.

A preliminary short version of this paper is published
in [19]. Compared with the preliminary version, we conduct a
substantial extension in this paper from three aspects. First
of all, we reformulate the problem setting by additionally
consider the impact of social relations between users on pre-
dicting next check-in time and location. We therefore develop
an enhanced version of the original model by adding graph
attention networks to learn user social-aware interest from
social relations. The user social-aware interest, along with user
dynamic interest, jointly affects the predicted probabilities of
next check-in time and location, enabling to better grasp user
interest. Secondly, we provide a more detailed introduction of
the model design, including graphical illustration and mathe-
matical computational equations, thereby making a better un-
derstanding of the key parts of this paper. Finally, we enhance
the experiment part by adding some more baselines, which
model social relations as well for the location prediction task
and a Hawkes process based baseline for the time prediction
task. We also design a variant of our final model for both of
the two tasks. The extensive results show more insights into
the effectiveness of the proposed model and the benefits of
incorporating social relations.

II. RELATED WORK

A. Next Check-in Inference

In the research domain of predicting next check-ins, most
pioneering studies concentrate on location prediction. Tradi-
tional approaches [4], [49], [11] are usually based on latent
factor models to cope with this problem, with the consideration

of their big success on recommender system. These studies
assume that the determination of the next check-in location
only depends on a user’s most recently visited location, which
does not conform to the real situation.

More recently, since deep recurrent models have surged as
the paradigm for sequential modeling tasks, such as language
modeling [26] and speech recognition [13], some studies
attempt to leverage RNNs for the next check-in location pre-
diction problem [3], [10], [20], [23]. The major strength is that
RNNs regard each mobile trajectory as a whole for modeling.
To be specific, DeepMove [10] takes multi-modal embeddings
as input to an RNN. CARA [23] incorporates spatial and
temporal information into the gating unit of RNNs. Although
these models behave better than traditional approaches, they
neglect the nature of the next check-in prediction is indeed a
multi-task learning problem, involving both the location and
time inference.

On the other hand, only a few studies [44], [45] investigate
the next check-in time prediction task. Yang et al. [45] first
extracted user mobility and check-in features and proposed
a survival based model to generate check-in time prediction.
Afterwards, they revised the original model and further intro-
duced a deep point process model [44] to achieve good per-
formance. Nevertheless, they assume next check-in locations
are pre-specified and thus cannot provide location prediction.
As aforementioned, RMTPP [7] is the most relevant study
for our multi-task problem. However, due to its two intrinsic
limitations, there is still room for improving the check-in
location and time inference performance, which is the focus
of this study.

B. Point Process and Attention Mechanism

Point process is a stochastic process that exhibits a wide
spectrum of applications in temporal event sequence modeling.
For example, Zhao et al. [51] introduced a coupled point
process to predict the dynamic popularity of social media
short messages such as tweets. Wang et al. [36] proposed
a coevolutionary point process to capture the interactions
between users and items. Liu et al. [21] designed a feature-
driven point process to forecast paper citation count. By further
combining the advantages of deep learning with point process,
a recurrent point process model [7] and a neural Hawkes
process model [25] are presented, enhancing the form of their
intensity functions to be more flexible. On this basis, we take
a further step by incorporating the idea of Hawkes process
into deep recurrent modeling through attention mechanism.

Attention mechanism [2] is widely employed to select im-
portant parts from image [1] or text [35], leading to significant
improvements. In this paper, we propose a simple attention
based method to automatically quantify the effect of users’
past check-in events on the happening of the next check-in
event.

C. Graph Neural Networks

Graph Neural Networks (GNNs) [53] have proven to be the
state-of-the-art approaches to learn diverse graph data. They
are good at propagating node representations along with edges
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and updating node representations with the combination of the
representations of the current node and its neighbors. Graph
convolutional networks (GCNs) [18] and Graph Attention Net-
works (GATs) [33] are representative types of GNNs. The for-
mer one equally aggregates the neighbors’ embeddings in each
convolution by using the existing edge weights to quantify the
different contributions of the neighbors. By contrast, the latter
leverages attention mechanism to learn the edge weights and
characterize the contributions. Existing studies have applied
GATs to social influence analysis [40], [29], conversation
generation [52], and relevance matching [48], etc. Since the
original social graph only contains binarized edges, in this
paper we leverage GATs to characterize the relation strength of
social links, which provides more informative signals to learn
user long-term representations. Note that the recent progress
in GNNs shows that they have been adapted to the sequential
recommendation scenario [39], [34]. However, these studies
emphasize the importance of constructing item-item graphs
in a general session-based scenario. This in contrast to our
study that aims at learning from social relations for the joint
inference of next check-in location and time.

III. PRELIMINARIES

In this section, we first give the main notations used
throughout this paper and formally define the studied prob-
lem. After that, we review the basic concepts of temporal
point process theory and the mathematical expressions of the
conditional intensity function.

A. Problem Formulation

Definition 1. (Check-in). Assume that the whole check-in
dataset is C, U represents a user set, L corresponds to a
set of unique locations, and T means the domain of time.
Each check-in record c is represented by a triplet (u, l, t) ∈
U × L × T , which indicates user u has visited location l at
timestamp t.

Definition 2. (User Social Graph). We organize the user
relations in the form of an undirected graph GU = (VU , EU ),
where VU (|VU | = |U |) and EU denote a node set and an
edge set, respectively. Each node is assumed to be connected
to itself, i.e., (v; v) ∈ EU for any v. We further represent
the graph with an adjacency matrix A. If there exists an
edge between node i and node j, which means Aij = 1 and
Aji = 1, otherwise Aij = 0 and Aji = 0.

We arrange all the check-ins belonging to the same user in
a chronological order and regard them as a whole check-in
sequence. For user u, the sequence is composed of check-in
records Cu = {cu,1, . . . , cu,k, . . .}. Meanwhile, we represent
the time interval of two consecutive check-ins as τ , i.e., τ1 = 0
and τk = tk − tk−1.

Definition 3. (Spatio-Temporal Trajectory). Given a speci-
fied maximum time interval ζ, a spatio-temporal trajectory
of user u is defined as a sequence consisting of multiple
consecutive check-ins, i.e., Su = {cu,1, . . . , cu,k, . . . , cu,j},
s.t., tk − tk−1 < ζ, ∀k ∈ {2, . . . , j}, where j is the length
of the trajectory.

In other words, a whole user check-in sequence Cu can be
divided into several non-overlapping spatio-temporal trajecto-
ries, i.e., Cu = {S1

u, . . . , S
nu
u }, where nu is the trajectory

number of user u. For simplicity, we omit the superscript of
Su if not specified.

Problem 1. (Next Check-in Location and Time Inference
Problem). Assuming social graph GU , user u, and his current
trajectory Su are given, the aim of the problem is to infer
the next check-in cu to be visited by the user, including the
corresponding location lu and time tu derived from time
interval τu.

B. Basics of Temporal Point Process
Temporal point process is an effective mathematical tool

to model temporal sequential data by using the conditional
intensity function λ∗(t): for a short time window [t, t + dt),
λ∗(t)dt = P{cu in [t, t + dt)|Ht} is the probability of
the occurrence of user u’s new check-in conditioned on the
historical records Ht. Assuming f∗(t) denotes the density
function and F ∗(t) is the cumulative distribution function,
λ∗(t) is given as:

λ∗(t)dt =
f∗(t)dt(

1− F ∗(t)
) . (1)

Based on the above equation, the density function can be
represented as:

f∗(t) = λ∗(t) exp(−
∫ t

tj

λ(ε)dε), (2)

where tj is the timestamp of the last event.
The conditional intensity function λ∗(t) could have different

forms. The homogeneous Poisson process [17] has the simplest
intensity function, which is non-negative and independent
of the history, i.e., λ∗(t) = λ(0) ≥ 0, where λ(0) is the
base intensity. Inhomogeneous Poisson process defines its
intensity function g(t) dependent on t but still irrelevant to
the history, i.e., λ∗(t) = g(t) ≥ 0. By contrast, Hawkes
process [8] is designed to capture the explicit effect of the
past history events with the intensity function defined as
λ∗(t) = λ(0) +α

∑
tj<t g(t, tj), where g(t, tj) is a triggering

kernel function relying on the history up to time t. However,
all the above models assume specific parametric forms of
intensity functions, which limit their expressive ability. To
alleviate this issue, the studies [7], [41] define the intensity
functions dependent on the hidden states learned by RNNs,
providing more functional capacity and achieving state-of-the-
art performance.

IV. THE COMPUTATIONAL APPROACH

In this section, we elaborate on the proposed approach
ARNPP-GAT. We first show how to encode user dynamic
interests by gated recurrent unit (GRU), followed by the
introduction of social graph learning with GATs that update
the node representations for long-term user preference. Af-
terwards, we look into the details of the multi-task prediction
module. Finally, we explain how the framework can be learned
in an end-to-end fashion. The graphical architecture is illus-
trated in Figure 1.
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Fig. 1: Architecture of the proposed ARNPP-GAT model.

A. User Short-term Behavior Modeling

Our model ARNPP-GAT is an end-to-end learning frame-
work which takes user ID, user social graph, location ID,
time interval (hours) and timestamp (hours in a week) as
inputs, and outputs the inferred next check-in location and
time information.

In practice, we first build three dictionaries, each of which
contains all valid timestamps, location IDs, and user IDs in a
target dataset, respectively. Upon this, each timestamp or ID
could be converted into a one-hot vector which is later fed into
the corresponding embedding layer. As shown in Figure 1, vl
and vt represent the dense vectors of location representation
and time representation, respectively. We concatenate and
input them to the subsequent layers.

Regarding to the recurrent modeling part of the model, we
consider two widely used variants, long short-term memory
(LSTM) [14], and GRU [6]. LSTM is composed of input,
output, and forget gates to transfer information and update
states. In comparison, GRU is a light-weighted variant of
LSTM, with one update gate to replace the forget gate and
the input gate in LSTM. For the simplicity of GRU, we adopt
it in ARNPP-GAT.

Given input Vk = [vl,k; vt,k] at time step k, hidden state
hk−1 at the last time step, and candidate state h̃k of GRU,
we obtain the current hidden state hk through the following
equations,[

ωk

rk

]
=

[
σ
σ

]
(Wωr · [Vk;hk−1] + bωr), (3)

h̃k = tanh(Wc · [rk � hk−1;Vk] + bc), (4)

hk = (1− ωk)� h̃k + ωk � hk−1, (5)

where ωk and rk are the activation states of the update gate
and reset gate, respectively. σ denotes the sigmoid function
and � represents the Hardmard product operation. h̃k is
activated by element-wise tanh(x). Wωr,Wc, bωr, and bc are
the parameters of GRU to be learned. After looping over each
time step, the hidden state sequence {h1, . . . , hj} is collected.

B. User Long-term Representation Learning
ARNPP-GAT utilizes GATs to learn deep representations

for user long-term and static preference from a given social
graph. As aforementioned, we map each user ID to a low-
dimensional vector (e.g., vu) through a user embedding layer.
One-layered GATs could only capture information from im-
mediate neighbors. When stacking multiple GATs layers, in-
formation from distant neighborhoods is grasped. Specifically,
given the social relation matrix A, GATs update user represen-
tations at the z-th layer based on neighbor user representations
at the previous layer. The computational formula is formally
defined as follows:

vzu = ρ(

|U |∑
u′=1

Auu′W zvz−1u′ + bz), (6)

where W z and bz are the trainable parameters at layer z, and
ρ is an activation function (e.g. ReLU). v0u is set as the initial
user embedding vu.

To differentiate the relative importance of social edges,
GATs dynamically determine the weights of social edges
(equal to one in the original graph) in the adjacency ma-
trix. Multi-head self-attention [32] mechanism is adopted to
measure the relevance between different nodes, allowing each
node to have different representation subspaces. It first linearly
projects vz−1u into M subspaces, equal to the number of heads.
Correspondingly, M attention functions are used in parallel to
summarize the representations of user neighborhoods. They
are concatenated together and regarded as the updated repre-
sentations:

MultiHead(vz−1U ) = [head1; head2; ...,headM ]WO,

headm = Self-Attention(vz−1U WQ
m , v

z−1
U WK

m , vz−1U WV
m ),

(7)

where the projections matrices for each head WQ
m , WK

m , WV
m

and WO are trainable parameters. For simplicity, we omit the
layer subscript z − 1. In actuality, the projection parameters
are not shared across different GATs layers. Given this, the
Self-Attention function is defined as follows:

Self-Attention(Q,K, V )

= Softmax(
vz−1U WQ

m × (vz−1U WK
m )T√

d/M
)vz−1U WV

m ,
(8)

where query Q, key K, and value V are the same projection
matrices as in Equation 7, d is the dimension of user embed-
ding. Moreover, in order to have a stable update of user static
presentation, we update it by linear interpolation:

v∗u = µ ∗ vzu + (1− µ) ∗ vu, (9)

where µ < 1 is a hyper-parameter tuned on validation datasets.
We execute the whole GATs procedure for every several
epochs. For future work, we could extend the social relation
learning approach if the time information of social edges is
given [37].

C. Multi-task Prediction Module
Figure 2 shows the details of the two consecutive multi-task

prediction modules. We pass the hidden state sequence with
the user dense vector as input to the module.
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Fig. 2: Detailed illustration of two consecutive multi-task prediction
modules at time step k and k + 1. ⊕ represents the concatenate
operator. Fc + Softmax is a fully connected layer followed by a
Softmax layer.

1) Check-in Time Prediction: We first focus on the left
part of the multi-task prediction module. As aforementioned,
previous studies [7], [28], [38] regard the most recent hidden
state hk gotten from RNNs to denote user short-term pref-
erence. This is suboptimal since past hidden states are not
fully employed in determining how to compute the conditional
intensities. Intuitively, check-ins occur in different time steps
have different degrees of importance for representing the
whole user trajectory and affecting the happening of future
check-ins. In this work, a simple but effective attention com-
putation is proposed to automatically quantify the effect of
past check-in events. To achieve this, we treat current hidden
state hk as the query vector and all the hidden states {hk′}kk′=1

as candidate vectors. The attention computation is formulated
as follows:

Attention(hk, hk′) = Softmax(
hk · hk′
√
dh

), (10)

where
√
dh is the scaling factor. We set dh to be same

as the dimension of GRU based hidden vectors according
to [32]. Based on the attention weights, we get the integrated
representation h̃k defined to be:

h̃k =

k∑
k′=1

Attention(hk, hk′) · hk′ . (11)

On this basis, we can formulate the conditional intensity
function for the next check-in time prediction by:

λ∗(t) = exp(vTT · h̃k + wU · v∗u + wT · gk + bT ), (12)

where vT , wU , wT , and bT are trainable parameters. gk =
t − tk is the time interval since the last check-in. h̃k is the
latent representation w.r.t the current step, accounting for the
influence from all previous check-ins in the trajectory. v∗u is
the user long-term representation gotten from the last layer of
GAT. The third term measures the current influence by the k-
th check-in, and the last term bt stands for the base intensity.
The outside exponential function plays the role of non-linear
transformation and guarantees that the intensity value is always
positive [7].

Finally, by replacing the conditional density function in
Equation 2 with Equation 12, we can derive the full expression

of the proposed deep point process by the following equation:

f∗(t) = exp
{
vTT · h̃k + wU · v∗u + wT · gk + bT

+
1

wT
exp

(
vTT · h̃k + wU · v∗u + bT

)
− 1

wT
exp

(
vTT · h̃k + wU · v∗u + wT · gk + bT

)}
.

(13)

The expected return time of next check-in t̂k+1 can be
computed as follows:

t̂k+1 =

∫ ∞
tk

t · f∗(t)dt. (14)

However, the above integration does not have an analytic
solution due to the complex form shown in Equation 13. As an
alternative strategy, numerical integration techniques [30] are
commonly used for one-dimensional functions to approximate
the expectation computation.

2) Check-in location prediction: In the right part of the
multi-task prediction module, we try to predict the next check-
in location. We first combine the user short-term preference
with the user long-term preference through the following way:

Oi = Wi[hk; v∗u] + bi, (15)

where [hk; v∗u] is the concatenation of the two types of user
representations. Wi and bi are the trainable parameters associ-
ated with the i-th location. Then we apply the Softmax opera-
tion to those representations O = {O1, . . . , Oi, . . . , O|L|} and
the i-th dimension can be seen as the probability of visiting
the corresponding location. The maximum element is selected
as the most possible location lk+1.

D. Multi-task Training

We integrate both the tasks of location prediction and time
prediction into a unified multi-task learning framework. The
loss for the check-in time prediction can be specified as:

LT (tk+1) = − log f∗(tk+1). (16)

The loss for the location prediction task is denoted as:

LLoc(lk+1) = −yk+1 log(Pk+1), (17)

where yk+1 is the one-hot encoding of the target location and
Pk+1 = Softmax(O) is the probability distribution w.r.t. each
location.

The final objective function is the sum of the time prediction
loss and the location prediction loss, which is formulated as
follows:

L =
∑
u∈U

∑
Su∈Cu

j−1∑
k=1

LLoc(lk+1) + βLT (tk+1) + γ‖Θ‖22,

(18)

where β and γ are the hyperparameters used for tuning relative
influence of the time prediction loss and the regularization loss
of model parameters (denoted by Θ). The whole framework
is trained using back-propagation in an end-to-end fashion.
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V. EXPERIMENTS

A. Datasets

We evaluate different methods based on two public real
datasets, which contain user check-in records and social re-
lations from two different LSNs.
Gowalla1: This most widely used dataset was collected from
Gowalla [5]. The raw dataset contains 6,442,890 check-ins
reported by 196,591 users distributed around the world. Each
check-in is composed of user ID, a location ID and its corre-
sponding GPS coordinate, and a timestamp. Since the dataset
is large, sparse, and globally distributed, we first restrict the
geographical area to the city of Los Angles (LA) according
to its coordinates. After that, we filter out the locations with
less than 5 visits and segment the whole trajectory sequence
into several trajectories based on the time interval between two
neighbor check-ins. To avoid the length of a trajectory to be
too long, we also constrain the maximal length of a trajectory.
Furthermore, we filter out these trajectories with less than 3
check-ins and users with less than 3 trajectories. We build the
user social graph on the remaining users. The check-in time
interval threshold ζ is set to 72 hours, due to the assumption
that two successive check-ins with a time interval larger than
72 hours are usually irrelevant to each other.
Foursquare2: It was collected from Foursquare [43], the
records of which ranges from Apr. 2012 to Jan. 2014 (about
22 months). We extract user check-ins within New York City
(NYC) and apply the same preprocessing procedures with
different settings. We filter out users with less than 10 check-
ins. Table I summarizes the statistics of the filtered datasets.

To perform an evaluation, we divide each dataset into its
respective training set, validation set, and test set based on
users. That is to say, the earliest 70% trajectories of each user
are selected as the training data, the following 20% as the
validation data, and the remaining 10% as the test data.

TABLE I: Statistics of the experiment datasets

Gowalla-LA Foursquare-NYC
# Users 716 1344
# Locations 5871 5771
# Check-ins 42273 73960
# User relations 682 1606
# Trajectories 7919 18806
# Sparsity 98.99% 99.04%
Avg. trajectory/user 11.06 13.99
Avg. friend/user 0.9525 1.1949
Avg. trajectory length 5.34 3.93

B. Evaluation Metrics

To evaluate model performance on the location prediction
task, the following two metrics are adopted: Recall and Mean
Reciprocal Rank (MRR). Given the top-n returned prediction
list for user u and its testing trajectory Su, these two metrics
reflect different aspects of the results: recall measures the num-

1https://snap.stanford.edu/data/loc-gowalla.html
2https://sites.google.com/site/yangdingqi/home/foursquare-dataset

ber of correct predictions in the result, while MRR considers
the rank of the prediction. Recall is computed as:

Recall@n =
1

|U |
∑
u∈U

1

|Su|
∑

cu,k∈Su

I(ranklg(u,k) ≤ n), (19)

where lg(u, k) denotes the k-th ground truth location for
trajectory Su, ranklg(u,k) refers to the rank position generated
by the model, and I(·) is an indicator function. Since Recall@n
does not differentiate the positions within the top-n list, we
adopt another metric MRR as a complement:

MRR =
1

|U |
∑
u∈U

1

|Su|
∑

cu,k∈Su

1

ranklg(u,k)
. (20)

Since each prediction in a trajectory of the test set has only one
ground-truth location, Recall@n is equivalent to Hit Rate@n
and proportional to Precision@n. In this work, we report Re-
call@n (n ∈ {1, 3, 5, 10}) and MRR@10 (ranklg(u,k) ≤ 10).
The larger values of these metrics indicate better performance.

For the time interval prediction task, we adopt Mean Square
Error (MSE) which is suitable for measuring of the difference
between the two continuous values, i.e., ground-truth tk and
predicted t̂k,

MSE =
1

|U |
∑
u∈U

1

|Su|
∑

cu,k∈Su

(
t̂k − tk

)2
. (21)

C. Baselines

We compare our approach with several recently proposed
competitive methods for next check-in location prediction and
time prediction, respectively.

1) Next check-in location prediction task:
• Markov model [24]: It is a simple baseline widely used

to predict future locations. It calculates the first-order
transition probabilities in a transition matrix consisting
of all the visited locations.

• RMTPP [7]: It uses a recurrent point process to model
the event sequence data. The main issues of this model
have been illustrated in Section I.

• CARA [23]: This is a GRU based sequential modeling
architecture in the location prediction task, which utilizes
the temporal and spatial data to create the contextual
attention gate and the spatio-temporal gate. We utilize
the released code of CARA cell3.

• DeepMove [10]: This is a particularly designed attention-
based recurrent model for human mobility prediction. It
relies on a multi-modal embedding module to transform
the available data into dense representations. We rede-
velop our training trajectories to cater to the paper settings
that distinguish current trajectory and historical trajecto-
ries, while the testing trajectories remain unchanged. We
implement the whole model along with the sequential
encoding module by utilizing the released code4.

• LOCALBAL [31]: This model integrates ratings with
local and global social relations to capture user preference

3https://github.com/feay1234/CARA
4https://github.com/vonfeng/DeepMove
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TABLE II: Method comparison on the location prediction task.

Method
Gowalla-LA Foursquare-NYC

Rec@1 Rec@3 Rec@5 Rec@10 MRR@10 Rec@1 Rec@3 Rec@5 Rec@10 MRR@10

Markov 0.08077 0.13520 0.16066 0.19051 0.11385 0.12721 0.23710 0.26345 0.29469 0.18441
DeepMove 0.12655 0.22577 0.26252 0.30552 0.18355 0.18154 0.29357 0.32015 0.35628 0.24255

CARA 0.12467 0.22827 0.26076 0.29236 0.18092 0.17915 0.29131 0.32405 0.34889 0.24178
RMTPP 0.09131 0.14925 0.17471 0.20369 0.12589 0.15770 0.24313 0.26760 0.29206 0.20417

LOCALBAL 0.12467 0.22037 0.26514 0.30817 0.18238 0.18218 0.29281 0.32556 0.37185 0.24685
eSMF 0.12467 0.22476 0.26163 0.30641 0.18292 0.18555 0.29770 0.32593 0.36696 0.24821
JNTM 0.11819 0.21188 0.25476 0.29884 0.17388 0.17087 0.27136 0.31351 0.34964 0.23005
PRPPA 0.13257 0.22994 0.26778 0.31343 0.19010 0.18329 0.29755 0.33195 0.37147 0.24665

ARNPP-GAT-NN 0.12905 0.22577 0.26452 0.30328 0.18512 0.18034 0.29281 0.32446 0.36527 0.24489
ARNPP-GAT 0.13433 0.23739 0.27129 0.32748 0.19558 0.18743 0.30773 0.34738 0.39067 0.25564

TABLE III: Method comparison on the time prediction task. Unit:
4h.

Method Gowalla-LA Foursquare-NYC

Avg 47.39 58.93
RMTPP 33.69 38.45
RSTPP 32.33 33.54

THP 31.82 32.67
PRPPA 31.40 31.88

ARNPP-GAT-NN 32.52 32.45
ARNPP-GAT 29.69 30.49

correlation. We incorporate the contribution from social
relations by adding this term to our objective function.

• eSMF [15]: By considering how much user behavior
would be affected by its direct friends, eSMF is further
improved over LOCALBAL by exploiting the graph
structure of neighbors. In other words, it calculates a trust
value for each friend to determine its importance.

• JNTM [42]: It is a neural network based approach to
jointly model social networks and mobile trajectories. It
models four key factors: user visit preference, social re-
lation influence, long and short-term sequential contexts.

2) Next check-in time prediction task:

• Average time (Avg): This method returns the average
time interval of historical check-ins as the predicted next
check-in time interval.

• RMTPP [7]: This model is capable of predicting the next
check-in time. Its intensity function considers the current
hidden state hk from a recurrent neural network.

• RSTPP [44]: It proposes a recurrent spatio-temporal point
process to predict check-in time. The spatial distance
impact is also grasped in the proposed intensity function.

• THP [54]: It is the latest point process model that
couples the ideas of transformer networks (self-attention
mechanism) with Hawkes process to fit event sequence
data. Thus it enjoys the ability to model long sequences.

Finally, we summarize the proposed models as follows:

• PRPPA: This is our approach proposed in the short ver-
sion [19] of this paper, which does not consider modeling
social relations.

• ARNPP-GAT-NN: This method shares the same multi-
task setting with a normal regression loss for the time

prediction task. The corresponding time prediction results
are shown in Table III.

• ARNPP-GAT: It is the full model proposed in this paper,
which fuses temporal and spatial aspects of check-ins, as
well as learning to encode social relations.

D. Hyperparameter Setting

We implement all the baselines and our proposed model
using Tensorflow. We select the hyper-parameters for both
datasets as follows. (1) We set the dimension of the latent
factors and hidden state size to 10 for all methods, and the user
embedding size is set to 64. (2) We use Gaussian distribution
(with the mean to be 0 and the standard deviation to be 0.01)
to randomly initialize all the embeddings and parameters. (3)
Adam [16] optimizer is exploited to learn model parameters in
a mini-batch fashion. (4) We execute the whole GATs updating
procedure for every 5 epochs. (5) We choose the initialized
learning rate from {0.001, 0.005, 0.01} and set the batch size
to 64. (6) Hyperparameters β and τ are tuned by performance
reference on the validation sets. (7) L2 regularization (l2 norm
with the coefficient to be 0.0001) and Dropout strategy (with
the dropout rate to be 0.5) are employed to alleviate the
overfitting issue. Detailed analysis of hyper-parameters on the
final performances is examined below in Section V-G.

E. Method Comparison

Location Prediction Performance: Table II shows the exper-
imental results in Gowalla and Foursquare on the location pre-
diction task. From a whole perspective, the Markov model per-
forms the worst, which is consistent with our expectation since
it only considers the first-order transition probabilities. The
RMTPP model shows some improvements over the Markov
model in terms of Recall, since it captures more sequential
information by recurrent units in the model. However, without
the help of user representation modeling, these two models
are not competitive with the other models. Both DeepMove
and CARA introduce user representations into their models.
Specifically, DeepMove uses a multi-modal embedding mod-
ule to transform the temporal data into dense vectors, while
CARA incorporates time interval and geographical distance
value into a spatio-temporal gate in recurrent modeling. As
we can see, DeepMove outperforms CARA for both datasets
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TABLE IV: Component analysis on both tasks.

Architecture
Gowalla-LA Foursquare-NYC

Rec@1 Rec@3 Rec@5 Rec@10 MRR@10 MSE Rec@1 Rec@3 Rec@5 Rec@10 MRR@10 MSE

ARNPP-GAT (T-LOC) 0.12379 0.21686 0.26327 0.30992 0.18543 N/A 0.18216 0.30147 0.33513 0.37938 0.25052 N/A
ARNPP-GAT (T-TIME) N/A N/A N/A N/A N/A 33.25 N/A N/A N/A N/A N/A 32.69
PRPPA 0.13257 0.22994 0.26778 0.31343 0.19010 31.40 0.18329 0.29755 0.33195 0.37147 0.24665 31.88
ARNPP-GAT w/o user 0.12467 0.22218 0.26339 0.32133 0.18813 31.15 0.18536 0.30222 0.33722 0.38653 0.25326 30.65
ARNPP-GAT w/o att 0.12818 0.22354 0.26563 0.32485 0.19012 33.74 0.18329 0.30034 0.34136 0.38553 0.25166 32.10
ARNPP-GAT 0.13433 0.23739 0.27129 0.32748 0.19558 29.69 0.18743 0.30773 0.34738 0.39067 0.25564 30.49

in most cases. The reason might be that the trajectory history
module provides some valuable information.

Compared with the above models, PRPPA considers the
spatial and temporal factors from the multi-task learning per-
spective and achieves a higher performance. This phenomenon
also makes sense as more supervised signals from the next
check-in time prediction task are injected into the model op-
timization process through back-propagation. The final model
ARNPP-GAT is an extension of PRPPA by learning from
social relations to improve user long-term representations.
The better performance of ARNPP-GAT over PRPPA shows
that incorporating social relation learning is indeed beneficial.
We also consider the variant, i.e., ARNPP-GAT-NN, to show
that using neural point process is better than conventional
fully connected networks for joint prediction. In addition, the
middle region in Table II covers several location prediction
models with social relation learning. By comparing ARNPP-
GAT with these models, we could observe the performance
advantage of ARNPP-GAT.
Time Prediction Performance: Table III shows the per-
formance of all the methods on the time prediction task.
We can observe Avg performs the worst since no check-in
related information has been considered. RSTPP has relatively
better performance than RMTPP since it considers user long-
time preference and spatial distance impact. In our study,
however, the performance gained by simply incorporating the
geographical distance through a linear transformation in the
intensity function is relatively low. THP is a strong baseline
that considers the impact of past events on current predictions
through transformer networks, which further validates the
idea of explicitly modeling the impact of past events in
the intensity function. The ARNPP-GAT-NN approach does
not perform so well for time prediction, revealing the fact
that temporal point process is a more elegant mechanism to
model temporal sequences. Generally speaking, PRPPA has
considerable improvements on both datasets over all the base-
lines, due to the multi-task learning and the incorporation of
attention mechanism in conditional intensity function. Thanks
to introducing social relations, the final model ARNPP-GAT
learns better user long-term representations than PRPPA and
gets the best performance.

F. Ablation Study
To verify the rationality of the main components in ARNPP-

GAT, we consider its several variants to test their contributions
to both tasks. We first use “ARNPP-GAT (T-LOC)” to denote
only considering the location prediction task and “ARNPP-
GAT (T-TIME)” to represent only focusing on the time

prediction task, respectively. From Table IV we can easily
observe that their performance is worse than the full model
ARNPP-GAT, indicating the significance of multi-task learn-
ing for better prediction performance. By comparing PRPPA
with “ARNPP-GAT (T-LOC)”, the performance is better on
Gowalla but worse on Foursquare. This reveals that multi-task
learning and social relation learning contribute differently to
the two datasets.

Furthermore, we consider removing user representations
from the conditional intensity function to check how it affects
the performance and name this variant as “ARNPP-GAT w/o
user”. The results show it is crucial for both tasks to achieve
better results. Last but not least, we validate the benefit of
explicitly capturing the impact of all past check-in events in
the same trajectory to the generation of future check-in events.
“ARNPP-GAT w/o att” erases the attention based computation
from the intensity function. The corresponding results reveal
that the above idea contributes to both tasks, especially for the
time prediction part.

G. Result Analysis of Hyperparameters

TABLE V: Results of layer number (z) for propagation.

ARNPP-GAT
Gowalla-LA Foursquare-NYC

Rec@10 MRR@10 Rec@10 MRR@10

z=0 0.31343 0.19010 0.37147 0.24665
z=1 0.32094 0.19357 0.37900 0.25490
z=2 0.32748 0.19558 0.39067 0.25564
z=3 0.32046 0.18567 0.38328 0.25402

1) Effect of layer number in GATs: Table V shows the
location prediction performance with different numbers of
GATs layers. We observe that stacking GATs layers can boost
performances especially when z = 2. This demonstrates
learning high-order user relations via representation learning
is indeed beneficial. The results decline as the model goes
deeper, which might be caused by the over-smoothing issue
of GNNs.

2) Effect of user embedding dimension and head number:
We now study how the combination of user embedding di-
mension and head number affects the prediction performance.
Table VI shows the results varying with user embedding
dimension and head number while keeping other optimal
hyper-parameters unchanged. When the user dimension and
the number are set to 64 and 8, respectively, the performance
is good for gaining the best results in half of the cases.
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Fig. 3: Effect of hyperparameters µ and β.

TABLE VI: Results of different user embedding dimensions and
number of heads.

ARNPP-GAT Gowalla-LA Foursquare-NYC
U dim N head Rec@10 MRR@10 Rec@10 MRR@10

16 4 0.29939 0.17337 0.35943 0.24503
32 4 0.31519 0.18838 0.38163 0.25489
32 8 0.33099 0.18803 0.37862 0.25500
64 4 0.32221 0.19379 0.38239 0.25316
64 8 0.32748 0.19558 0.39067 0.25564
64 16 0.32924 0.19410 0.38766 0.25680

3) Effect of hyperparameter µ: We first study the impact
of hyperparameter µ by changing its value from 0 to 1. Note
that when µ equals to 0, our model degenerates to PRPPA.
As shown in Figure 3(a) and 3(b), the overall performance
increases first and then gets a little drop as value gets larger
in both Rec@10 and MRR@10. As for the time prediction
task, the best µ is around 0.35 for Gowalla and 0.25 for
Foursquare. The shapes of the curves corresponding to MSE
again demonstrate the advantage of learning social relations
for time prediction.

4) Effect of hyperparameter β.: To investigate how Lt

influences the prediction performance, we set it to different
values ranging from 10−5 to 100. As the curves shown in
Figure 3(c) and 3(d), ARNPP-GAT obtains a little better
results in both Rec@10 and MRR@10 when β becomes larger
in a small numerical range. After β surpasses some thresholds,
the performance becomes worse to some extent. Specifically,
Gowalla finds its descent performance around 10−4, while
Foursquare reaches to the peak at 10−2.

VI. CONCLUSION

In this paper, we have addressed the next check-in location
and time prediction from a multi-task learning perspective.
Inspired by the power of deep recurrent modeling and tempo-
ral point process, we have proposed a novel model named
ARNPP-GAT, a natural extension of RMTPP by: 1) intro-
ducing user representation learned from GATs to denote user
long-term preference and combining it with user short-term
preference gained by sequential modeling; 2) proposing an
attention based method to explicitly capture the effect of past
check-in events, along with user representations, for the gen-
eration of next check-in event. Comprehensive experiments on
two real datasets have shown ARNPP-GAT is superior among
all the adopted methods for both tasks and demonstrated the
significance of the main components in the model architecture.
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