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Abstract

Knowledge distillation (KD) is a promising teacher-student
learning paradigm that transfers information from a cum-
bersome teacher to a student network. To avoid the training
cost of a large teacher network, the recent studies propose
to distill knowledge from the student itself, called Self-KD.
However, due to the limitations of the performance and ca-
pacity of the student, the soft-labels or features distilled by
the student barely provide reliable guidance. Moreover, most
of the Self-KD algorithms are specific to classification tasks
based on soft-labels, and not suitable for semantic segmen-
tation. To alleviate these contradictions, we revisit the label
and feature distillation problem in segmentation, and pro-
pose Self-Decoupling and Ensemble Distillation for Efficient
Segmentation (SDES). Specifically, we design a decoupled
prediction ensemble distillation (DPED) algorithm that gen-
erates reliable soft-labels with multiple expert decoders, and a
decoupled feature ensemble distillation (DFED) mechanism
to utilize more important channel-wise feature maps for en-
coder learning. The extensive experiments on three public
segmentation datasets demonstrate the superiority of our ap-
proach and the efficacy of each component in the framework
through the ablation study.

Introduction
Semantic segmentation (SS) has been a longstanding

challenge in computer vision, which is the foundation of
numerous advanced intelligent applications, such as image
editing (Zhu et al. 2020), scene understanding (Zheng et al.
2021) and automatic pilot (Levinson et al. 2011; Huang
et al. 2018). As a dense prediction task, it aims to assign
a semantic label for each pixel in an image. Thanks to
the renaissance of deep learning, the approaches based on
fully convolutional networks (FCN) (Long, Shelhamer, and
Darrell 2015) have been the mainstream of semantic seg-
mentation and achieved remarkable performance. In addi-
tion to utilizing deeper backbone networks (Simonyan and
Zisserman 2015; He et al. 2016; Huang et al. 2017; Xie
et al. 2017), most of the works focus on preserving the
global information with context aggregation, and introduce
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some efficient modules, e.g., pyramid pooling module (Zhao
et al. 2017), dilated convolution (Chen et al. 2017a), self-
attention (Fu et al. 2019). However, these complex and
strong architectures usually have heavy parameters and re-
quire overwhelmed computation, which limit the deploy-
ment of segmentation networks on resource-constrained mo-
bile devices. In contrast, designing efficient segmentation
networks has attracted increasing attentions due to their bal-
ance between performance and cost, e.g., ENet (Paszke et al.
2016), ERFNet (Romera et al. 2017), ESNet (Lyu et al.
2019). Compared with hand-crafted lightweight model de-
sign, knowledge distillation (KD) is a more popular and gen-
eral solution to model compression and stimulating the po-
tential small models.

Currently, most of the KD methods (Zagoruyko and Ko-
modakis 2017; Peng et al. 2019; Liu et al. 2019; Shu et al.
2021; Liu, Zhang, and Wang 2022) are with teacher-student
learning architectures (abbreviated as T-S KD), as shown
in Figure 1(a), in which the compact student network is
trained with the supervision of the soft-labels or interme-
diate features from the well-trained teacher. T-S KD terribly
suffers from a two-stage training scheme and tremendous
computation and memory cost of the cumbersome teacher.
And this issue is further amplified in complex tasks like
SS. To alleviate this issue, some researchers (Zhang et al.
2019; Yuan et al. 2020; Kim et al. 2021; Zhang et al. 2021a;
Hou et al. 2019; Ji et al. 2021) investigate to distill in-
formation from the student network itself, which is called
Self-KD, as shown in Figure 1(b). However, most of the
Self-KD methods are specific to classification models and
depend on image-level soft-labels or cross-layer features.
The soft-labels, constructed manually (Szegedy et al. 2016;
Yuan et al. 2020) or obtained from the multi-exit architec-
ture (Zhang et al. 2019, 2021a), often contain uncertain in-
formation and cannot substitute the output by strong teach-
ers. In fact, the label-based Self-KD methods are usually re-
garded as a specific label smoothing regularization (LSR)
in some researches (Mobahi, Farajtabar, and Bartlett 2020;
Kim et al. 2021; Zhang and Sabuncu 2020). But this mech-
anism is not suitable for SS, which is a pixel-level classifi-
cation task and depends on context information instead of
independent image labels. Zhang et al. (Zhang et al. 2021a)
extended the multi-exit Self-KD architecture to SS networks
but bring limited improvements. In contrast to label-based



Self-KD, some works (Hou et al. 2019; Ji et al. 2021) fo-
cus on refining or distilling feature knowledge cross layers,
which only brings tiny improvement due to contradictory
constraints between the front and rear layers.

Therefore, in this paper, to address the issues of involuted
T-S KD and insufficient Self-KD in SS, we revisit the distil-
lation problem and propose a novel self-decoupled and en-
semble distillation framework tailed for efficient segmenta-
tion (SDES). The core idea of our method is to construct
reliable soft-labels and enhanced features to provide rich
information for the decoder and backbone of the student,
respectively. These two kinds of knowledge both are dis-
tilled from the student itself, which can avoid complicated
teacher-student learning and tickle label smoothing. In par-
ticular, we introduce two expert modules to decouple and
integrate information, following the decoder and backbone
respectively, as shown in Figure 1(c). On the one hand, a de-
coupled prediction ensemble distillation (DPED) algorithm
is developed to generate reliable soft-labels from multiple
expert decoders with disentangled class-wise information
and reduced learning complexity. The expert decoders can
work as strong teachers in terms of the decoupled labels.
On the other hand, we introduce a channel-wise decoupled
feature ensemble distillation (DFED) mechanism to enhance
the global attention for self-regulation of the backbone. The
feature maps with richer information are selected from each
layer and aggregated as an expert-level attention map to su-
pervise the whole backbone. With these insights, we imple-
ment our SDES framework and conduct extensive experi-
ments on three public segmentation datasets to evaluate the
effectiveness of the framework. In fact, it combines the ad-
vantages of both previous T-S KD and Self-KD, balancing
model performance and training efficiency.

In a nutshell, our main contributions are as follows:

• We investigate the class-disentangled segmentation prob-
lem and propose a decoupled prediction ensemble distil-
lation (DPED) algorithm for reliable soft-labels genera-
tion.

• A decoupled feature ensemble distillation (DFED)
scheme is developed for attention enhancement with
channel-wise selection at multiple layers. To the best of
our knowledge, this is the first research effort to exploit
decoupled predictions and features for Self-KD on SS.

• Without the assistance of cumbersome teacher networks,
our SDES framework can make the compact student SS
networks achieve very competitive performance in one-
stage distillation, as compared to both previous T-S KD
and Self-KD methods.

Related Work
Semantic Segmentation (SS)

Recent works in semantic segmentation are mainly based
on fully convolutional networks (FCN) (Long, Shelhamer,
and Darrell 2015) and gain improvements through receptive
field expansion and context aggregation. Badrinarayanan et
al. (Badrinarayanan, Kendall, and Cipolla 2017) extended
the VGG (Simonyan and Zisserman 2015) model to an

encoder-decoder architecture to refine the latent features ex-
tracted from the backbone. PSPNet (Zhao et al. 2017) ex-
ploits the capability of global context information by context
aggregation through pyramid pooling module. The DeepLab
series (Chen et al. 2015, 2017a,b) introduce dilated convo-
lutions and multi-scale features to enlarge receptive field.
Moreover, some works (Yu et al. 2018; Fu et al. 2019; Huang
et al. 2019) focus on obtaining full-image contextual infor-
mation through attention mechanisms. Recently, some re-
searchers are starting to explore Transformer-based segmen-
tation networks (Xie et al. 2021; Strudel et al. 2021), which
can mine global dependency information by self-attention.

Meanwhile, designing highly efficient segmentation net-
works is a promising direction for practical deployment. In
addition to adopt compact classification backbone (e.g., Mo-
bileNet (Sandler et al. 2018), ShuffleNet (Ma et al. 2018)),
some researchers dedicate to designing real-time compu-
tation architectures, such as ENet (Paszke et al. 2016),
ERFNet (Romera et al. 2017), ESNet (Lyu et al. 2019), and
so on. Beyond the above works, we focus on boosting the
performance of compact segmentation networks via knowl-
edge distillation approach.

Knowledge Distillation (KD)
Since KD was proposed as a teacher-student learning

architecture by Hinton et al. (Hinton, Vinyals, and Dean
2015), it has been a popular model compression way in
visual classification (Park et al. 2019; Xie et al. 2020;
Zhang et al. 2020) and other tasks (Li et al. 2022; Porrello,
Bergamini, and Calderara 2020; Weinzaepfel et al. 2020).
According to whether a teacher network is participant, most
of the KD methods can be roughly divided into two cate-
gories (Wang and Yoon 2020; Gou et al. 2021): T-S KD and
Self-KD. Obviously, the T-S KD methods (Zagoruyko and
Komodakis 2017; Peng et al. 2019; Chen et al. 2020; Liu,
Zhang, and Wang 2022) aim to transfer information from
the well-trained teacher to the compact student, which is
the mainstream. The main idea of Self-KD is to distill soft-
labels (Zhang et al. 2019; Yuan et al. 2020; Mobahi, Fara-
jtabar, and Bartlett 2020; Zhang et al. 2022; Kim et al. 2021;
Zhang et al. 2021a) or features (Hou et al. 2019; Ji et al.
2021; Li 2022) from the student itself, without a teacher net-
work. Some studies (Zhang et al. 2019, 2021a) introduce a
multi-exit architecture to boost the student itself, while the
studies (Zhang et al. 2022; Kim et al. 2021) propose to refine
the soft-targets for the student. In addition, the works (Hou
et al. 2019; Ji et al. 2021) aim to guide the intermediate lay-
ers of the student with attention mechanism or refined fea-
tures. However, most of the Self-KD methods are tailored
for classification tasks (Zhang et al. 2019; Yuan et al. 2020;
Mobahi, Farajtabar, and Bartlett 2020; Ji et al. 2021) and
not suitable for SS (Zhang et al. 2021a). Meanwhile, there
are tiny KD methods for segmentation (Liu et al. 2019; Shu
et al. 2021; Liu, Zhang, and Wang 2022) that all rely on
high-cost teacher networks. Zhang et al. (Zhang et al. 2021a)
extended the multi-exit architecture to SS, which is the first
effort of the Self-KD in SS task. LSR (Szegedy et al. 2016)
regularizes model training by replacing the one-hot labels
with smoothed ones, which can provide a smoothing distri-
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Figure 1: Overview of different kinds of knowledge distillation methods.

bution to make the model avoid over-confidence. It can be
regarded as a teacher-free / self-boosting method. LSR is of-
ten associated with KD in some theoretical researches (Yuan
et al. 2020; Müller, Kornblith, and Hinton 2019; Mobahi,
Farajtabar, and Bartlett 2020; Yun et al. 2020; Shen et al.
2021; Lukasik et al. 2020). Our method is teacher-free but
can guide the student reliably with the two expert modules
like T-S KD.

Methodology
Preliminary

Semantic segmentation is mainly formulated as a pixel-
wise dense classification problem that aims to assign an indi-
vidual semantic label from C classes to each pixel in an im-
age. The segmentation network is usually decomposed of a
backbone/encoder and a decoder, which can be denoted as E
and D, respectively. With an RGB image X ∈ RH×W×3 as
input, the corresponding prediction map output by the seg-
mentation network is P = D ◦ E(X). H and W denote
the height and width of both the input image and prediction
map. The loss function LSS of the segmentation task is for-
mulated as pixel-wise cross-entropy with the ground-truth
label map Y :

LSS = − 1

H ×W

H×W∑
i

C∑
j

Yi,j log σ(Pi)j , (1)

in which Yi,j represents the j-th one-hot value of the i-th
pixel, Pi is the categorical logits of the i-th pixel. σ(·) de-
notes the softmax function, and the j-th class probability of
the i-th pixel can be calculated by σ(Pi)j =

exp(Pi,j)∑C
c=1 exp(Pi,c)

.
Figure 2 depicts the proposed SEDS framework, consist-

ing of the DPED and DFED modules that work as experts
for soft-label and feature distillation, respectively. We will
elaborate them in the following.

Decoupled Prediction Ensemble Distillation
(DPED)

Motivation. To obtain an excellent teacher network, cur-
rent T-S KD methods (Zagoruyko and Komodakis 2017; Liu
et al. 2019; Shu et al. 2021) mainly pre-train a stronger
backbone with more parameters and computation. In general

classification, we empirically find that if a classification net-
work takes charge fewer or a part of categories, it can easily
achieve better performance. In view of the multi-class and
pixel-annotated label maps for SS, we derive that an entire
semantic label map can be decomposed of more subset-class
even one-class maps. This can debias the class-wise depen-
dency and imbalanced category distribution. With these in-
sights, we argue that multiple perfect sub-area experts can be
trained to guide the student network with reliable soft-labels.

We construct N expert decoders {DT
1 , D

T
2 , · · · , DT

N} fol-
lowing the weight-shared encoder E and in parallel with
the student decoder D. As for the architectures of the ex-
pert decoders, they can be very lightweight with tiny pa-
rameters as discussed in experiment part. Different from
D, the expert decoders are trained to classify a subset of
the fully semantic categories, which can reduce the entan-
glement among classes in one image. Intuitively, allocat-
ing fewer categories (e.g., one category) to each expert de-
coder could ensemble more accurate soft-labels. However,
this needs more decoders and increases the computation and
memory usage in training. Moreover, over-mighty experts
could cause big gap with the student model which is not
conducive to the soft-label distillation. To this end, we em-
pirically apply “more to less” subset split strategy to each
expert decoder. In particular, we divide the entire label set
Ψ = {1, 2, · · · , C} with C semantic categories into N sub-
sets, Ψ = Ψ1 ∪ Ψ2 ∪ · · · ∪ ΨN , N ≪ C. And there is no
intersection between any two subsets.

Additionally, to alleviate the class imbalance problem in
each semantic map, we group the categories with a similar
number of pixels into a subset, which is motivated by the
long-tailed classification methods (Li, Wang, and Wu 2021;
Zhang et al. 2021b). We rank and split the N subsets ac-
cording to pixel-wise class cardinality (more to less), which
indicates that these subsets become less imbalanced than the
original.

To allocate the ground truth label map with subset cate-
gories for each expert decoder DT

n , we calculate a mask ma-
trix Mn ∈ RH×W about the whole label map Y . The i-th
element in Mn is defined as

Mn
i =

{
1 , if argmax(Yi) ∈ Ψn

0 , otherwise
, i ∈ {1, 2, · · · , H×W} .

(2)
Then the new subset label map to train the decoder DT

n can
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Figure 2: The proposed SDES framework. To better depict the prediction decoupling mechanism, we only show three typical
semantic classes in the expert decoders and overlook the “more to less” subset splits in experiments. In DFED, the shades of
color reflect the importance of channels.

be obtained by taking the dot product of the corresponding
mask Mn and the original label map Y : Y n = Mn ⊙ Y .

The segmentation loss of the expert decoder DT
n is to train

each pixel in the sub-area with the label Y n using cross-
entropy. We can combine the losses of all the expert de-
coders as

LT
SS =

1

N

N∑
n

LT,n
SS

= − 1

N

N∑
n

1

|Mn|

H×W∑
i,Mn

i ̸=0

C∑
j

Y n
i,j log σ(P

T,n
i )j ,

(3)

where PT,n
i is the predicted logits of the i-th pixel from ex-

pert decoder DT
n , and PT,n = DT

n ◦E(X). |Mn| is the num-
ber of non-zero elements in the mask Mn. It’s worth noting
that the parameters of all expert decoders are updated syn-
chronously with the student decoder D. We assume that the
student encoder E trained with the segmentation loss LSS is
sufficient to extract rich features. Hence, it’s not necessary
to be updated by the back-propagation from each expert de-
coder. And this can speed up the training process.

The ensemble of expert decoders can output reliable soft-
labels for prediction distillation. We collect all the disjoint
subset prediction maps {PT,1, PT,2, · · · , PT,N} from the
expert decoders and integrate them into an ensemble predic-
tion map PT with the corresponding subset masks. This can
be formulated as

PT =

N∑
n

(
Mn ⊙ PT,n

)
+

(
1−

N∑
n

Mn

)
⊙ P , (4)

in which ⊙ is the dot product operation. Generally, there
are some ignored categories in the segmentation label sets,

which are not considered in the mask calculation but can
contribute to an incomplete expert prediction map. Thus, we
introduce the student prediction map P to fill in the gap.

With the ensemble prediction map PT , the decoupled pre-
diction ensemble distillation (DPED) loss is formulated as a
Kullback-Leibler (KL) divergence between the student soft-
label map and the ensemble soft-label map, similar to the
vanilla KD (Hinton, Vinyals, and Dean 2015):

LDPED =
1

H ×W

H×W∑
i

KL
(
σ(

Pi

τ
)
∥∥σ(PT

i

τ
)

)

=
1

H ×W

H×W∑
i

C∑
j

σ (Pi/τ)j log
σ (Pi/τ)j

σ
(
PT
i /τ

)
j

,

(5)

where σ(Pi/τ) and σ(PT
i /τ) calculate the i-th soft-label of

the student and ensemble expert, respectively. τ > 0 is the
distillation temperature.

Decoupled Feature Ensemble Distillation (DFED)
Motivation. In addition to the prediction expert, we can

also construct a feature expert module to guide the student
encoder at feature level. Analogy to the interminable distil-
lation in T-S KD, the key is to obtain an expert feature map
with richer information than the student extraction. With
these insights, we innovatively propose to decouple the fea-
ture maps from multiple layers of the student itself, and then
select the more important parts for aggregation and distilla-
tion.

Model filter pruning (Li et al. 2017; He, Zhang, and Sun
2017; Lin et al. 2020) is a model compression way that aims
to remove some unimportant convolutional filters according



to certain criteria. We take inspiration from this and intro-
duce a channel-wise feature selection mechanism to reuse
the meaningful features and drop the tickle part, ensuring
to provide the student with trustworthy information. Differ-
ent from filter pruning, the measure and selection operations
in our scheme are applied on the feature maps extracted by
each layer, instead of the convolutional filters.

We denote each layer of the student encoder E as Eℓ, ℓ ∈
{1, 2, · · · , L}, i.e., E(X) = EL◦EL−1◦· · ·◦E1(X). Thus,
the feature map extracted by the ℓ-th layer is represented by
Fℓ = Eℓ ◦ Eℓ−1 ◦ E1(X). Following the study (Li et al.
2017), we introduce a sum of absolute values raised to the
power of p to measure the importance of the k-th channel in
the feature map Fℓ,

wℓ,k =

Hℓ×Wℓ∑
i

|Fℓ,k,i|p , (6)

where Hℓ,Wℓ are the height and width of the feature map
Fℓ. | · |p is the p-power of the activation scalar, and we set
p = 1. Fℓ,k,i represents the i-th scalar at the k-th channel of
the Fℓ.

The channels with larger weights are selected for reuse,
and the others are dropped. The reuse set of features is de-
fined by

Freuse
ℓ = {Fℓ,k|wℓ,k ⩾ hγ(wℓ)} . (7)

Here, hγ(·) is a rank and selection function to get the thresh-
old of the top γ weights. We set γ = 0.5 by default. The
other channels at the ℓ-th layer belong to the drop set Fdrop

ℓ ,

Freuse
ℓ ∪ Fdrop

ℓ = Fℓ ,Freuse
ℓ ∩ Fdrop

ℓ = ∅ . (8)

We concatenate the reused channels in Freuse
ℓ into a new

feature map F reuse
ℓ ∈ R⌊Cℓ×γ⌋×Hℓ×Wℓ , in which ⌊·⌋ is

the floor operation. To unify the shapes of different reused
feature maps from different layers, we downsample all the
front (L − 1) feature maps to the same size as the last one,
i.e., HL × WL. The whole last-layer feature map FL with-
out pruning works as the student-side features in distillation.
The attention maps of the previous layers and the last layer
are calculated by

Aℓ =
F̂ reuse
ℓ∥∥∥F̂ reuse
ℓ

∥∥∥
2

, AL =
FL

∥FL∥2
. (9)

Note that F̂ reuse
ℓ is the downsampling version of F reuse

ℓ ,
and AT , AL ∈ RHL×WL .

To aggregate the previous attention maps as an ensemble
version AT , we compute the element-wise maximum by

AT
i = max(A1,i, A2,i, · · · , AL−1,i) , (10)

where i ∈ {1, 2, · · · , HL×WL}. The decoupled feature en-
semble distillation loss function can be simply formulated as
an L2 distance between the expert and student-side attention
map:

LDFED =
∥∥AL −AT

∥∥
2
. (11)

Overall Framework
We summarize our decoupled prediction and feature en-

semble distillation together to train the student network. The
cross-entropy segmentation losses for the student and auxil-
iary decoders are also employed. As such, the total loss of
the SDES framework is formulated as

Ltotal = (LSS + LT
SS) + αLDPED + βLDFED . (12)

Here, α and β are the weight coefficients to balance differ-
ent components. The auxiliary decoders will be discarded in
inference and not increase parameters or computation.

Experiments
Datasets

Pascal VOC 2012 (Everingham and Winn 2011) is a
visual object segmentation dataset that that consists of 21
classes (20 foreground object classes and an extra back-
ground class). We extend it with additional annotation pro-
vided by the previous study (Hariharan et al. 2011), resulting
in 10582/1449/1456 images for train/val/test.

Cityscapes (Cordts et al. 2016) contains 5000 high-
resolution images (2975 fine annotation images for train-
ing, 500 for validation, and 1525 for testing) for urban scene
parsing. It covers more than 30 classes, but only 19 classes
are adopted for evaluation.

CamVid (Brostow et al. 2008) is an automotive dataset,
containing 367/101/233 images for train/val/test, each with
720 × 960 pixels. Methods are evaluated on the most fre-
quent 11 classes.

Implementation Details
Network architectures. For T-S KD experiments, we em-

ploy the segmentation architecture DeepLabV3 (Chen et al.
2017b) with ResNet-50 (He et al. 2016) backbone as the
strong teacher network, without specific instruction. As for
the student networks in T-S KD and Self-KD, we use a
broad range of compact network architectures, including
DeepLabV3 (Chen et al. 2017b) with lightweight backbones
(e.g., ResNet-18 (He et al. 2016), MobileNetV2 (Sandler
et al. 2018), and EfficientNet-B0 (Tan and Le 2019)) and
some real-time segmentation networks (e.g., ENet (Paszke
et al. 2016), ERFNet (Romera et al. 2017) and ESNet (Lyu
et al. 2019)).

Training setup. Our approach is implemented by Py-
Torch with two NVIDIA 2080Ti GPUs. Following standard
data augmentation, we apply random horizontal flipping and
random cropping with size of 512 × 512 during training.
The student networks are optimized by mini-batch stochas-
tic gradient descent (SGD) with the momentum (0.9) and
the weight decay (0.0001). We set the initial learning rate
as 0.01 and use “poly” learning rate decay where the ini-
tial learning rate is multiplied by (1 − iter

max iters )
0.9 after

each iteration. The number of the total training iterations is
30K/45K/5K for VOC/Cityscapes/CamVid with a batch size
of 8. The hyperparameter τ , α and β are set to 10, 0.5 and
100 by default, respectively.



Method Student LSR Tf-KD SAD SR-SS KL* AT* CWD* Ours
Teacher-free ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

MobileNetV2 71.12 72.08 72.23 71.92 72.23 71.60 71.45 71.66 72.62
ResNet-50 76.75 77.24 77.46 76.98 77.20 77.13 77.02 77.71 78.00

Table 1: Performance of different distillation methods on the VOC dataset in terms of DeepLabV3. We adopt another pre-trained
student network as the teacher in T-S KD methods which are marked with “*”. “Teacher-free” indicates whether or not using
pre-trained teacher networks.

Network Method Teacher-free (TF) mIoU PA Params FLOPs

DeepLabV3
(ResNet-50) Teacher - 74.85 95.53 39.64 M 327.97 G

DeepLabV3
(ResNet-18)

Student ✓ 69.19 94.79

15.90 M 134.08 G

Ens-T - 76.26 96.64
LSR (Szegedy et al. 2016) ✓ 68.94 94.71
Tf-KD (Yuan et al. 2020) ✓ 70.35 94.96

SAD (Hou et al. 2019) ✓ 70.10 94.98
SR-SS (Zhang et al. 2021a) ✓ 70.46 95.01

Tf-FD (Li 2022) ✓ 70.83 95.04
KL (Hinton, Vinyals, and Dean 2015) ✗ 70.30 95.00
AT (Zagoruyko and Komodakis 2017) ✗ 71.02 94.95

CWD (Shu et al. 2021) ✗ 71.53 95.12
Ours(w/o DFED) ✓ 71.81 95.12
Ours(w/o DPED) ✓ 71.12 95.06

Ours ✓ 72.15 95.20

ERFNet Student ✓ 67.68 - 2.07 M 26.86 GOurs ✓ 69.24 -

ESNet Student ✓ 67.05 - 1.66 M 24.35 GOurs ✓ 69.07 -

ENet Student ✓ 60.14 - 0.36 M 4.35 GOurs ✓ 61.90 -

Table 2: Performance of different distillation methods on the Cityscapes dataset. We tag the self-ensemble teacher as “Ens-T”.
FLOPs is measured based on the fixed size of 512 × 1024.

Evaluation metrics. We employ mean Intersection over
Union (mIoU) and Pixel Accuracy (PA) to measure the seg-
mentation performance. Floating point operations (FLOPs)
and parameters (Params) are utilized to measure the compu-
tation and storage cost of the models.

Comparison with State-Of-The-Art
Results on VOC. We evaluate the proposed distilla-

tion method on Pascal VOC 2012 with two student net-
works: DeepLabV3 with MobileNetV2 and ResNet-50, re-
spectively. We set N = 5 and divide the background class
into a group while the other 20 foreground classes into 4
groups. For a fair comparison, we introduce another pre-
trained student network, instead of stronger networks, as the
teacher in T-S KD, which is marked with “*” in the tables.
The mIoU performance of the students is presented in the
Table 1. Our method can outperform both the state-of-the-art
Self-KD and T-S KD approaches and improve about 1.5%

mIoU on both compact and large networks.

Results on Cityscapes. Table 2 demonstrates the perfor-
mance of different distillation methods on the Cityscapes in
terms of four compact or real-time segmentation networks.
We set N = 4 and employ the expert decoders with sim-
ple architectures, i.e., two fully convolutional layers. The
parameters and FLOPs of the ensemble teacher for ResNet-
18 are 15.94 M and 134.34 G, respectively. Each decoder
has only about 0.01 M parameters and brings less than 0.1
G FLOPs in the training stage. Without heavy parameters
and pre-training, the self-ensemble teacher can achieve the
similar performance to a cumbersome teacher. We can see
that the four Self-KD methods bring limited improvement,
i.e., only about 1% mIoU, and the two intermediate T-S KD
methods (AT and CWD) boost the student by more than 2%
mIoU. The proposed method achieves competitive perfor-
mance and even outperforms the T-S KD methods. Compar-
ing to T-S KD methods, ours does not need the teacher that
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Figure 3: Impacts of (a) the weight coefficient α, (b) β, (c)
the feature selection ratio γ, and (d) the number of expert
decoders N . We adjust DeepLabV3 with EfficientNet-B0 on
CamVid.

has 39.64 M parameters and requests extra 327.97 G FLOPs
in distillation. Moreover, only with DPED or DFED, the pro-
posed SEDS method can improve the student by 1.9 ∼ 2.6%
mIoU. We conduct extensive experiments on three real-time
segmentation networks, i.e., ERFNet, ESNet and ENet, and
the student is improved by nearly 2% mIoU.

Results on CamVid. In Table 3, we compare the pro-
posed SDES against the state-of-the-art distillation methods
on the CamVid dataset in terms of DeepLabV3 with two dif-
ferent lightweight backbones. We adopt two expert decoders
the same as the student decoder D. There are only 11 se-
mantic classes, so we set the distillation temperature τ = 5.
For MobileNetV2, our SEDS method can improve the stu-
dent network by nearly 1% mIoU, while the other Self-KD
methods that are specific to classification even degrade the
performance. Compared to complicated T-S KD methods,
our method achieves 67.74% mIoU on EfficientNet-B0. It’s

MobileNetV2 EfficientNet-B0

Params: 12.65 M Params: 7.31 M

Method TF mIoU Method TF mIoU

Student ✓ 66.74 Student ✓ 67.56
LSR ✓ 64.45 Ens-T - 75.25

Tf-KD ✓ 65.75 KL* ✗ 68.05
SAD ✓ 66.45 AT* ✗ 67.71

SR-SS ✓ 66.85 CWD* ✗ 68.55
Ours ✓ 67.71 Ours ✓ 68.74

Table 3: Performance of different distillation methods on the
CamVid dataset in terms of DeepLabV3.

LSS LDPED LDFED mIoU

✓ 67.56
✓ ✓ 68.13
✓ ✓ 68.37
✓ ✓ ✓ 68.74
✓ Rand ✓ 68.19

Table 4: Ablation study of self-distillation loss terms on
CamVid.

worth noting that even the massive ResNet-50 segmentation
network with 39.64M parameters only has 68.88% mIoU on
the CamVid dataset.

Ablation Study

Impact of hyperparameters. Figure 3 depicts the im-
pacts of four hyperparameters in our framework. The α and
β balance the two self-distillation loss functions. As shown
in Figure 3(a)(b), we adjust α ∈ [0.1, 10], β ∈ [1, 500] and
find α = 0.5, β = 100 are the better choice. As for the
channel-wise feature selection ratio γ ∈ [0, 1], we find that
too large or too small γ is not suitable for segmentation, and
0.25 ∼ 0.5 is the better choice. Finally, we investigate the
impact of the number of expert decoders N and the corre-
sponding results are shown in Figure 3(d). As can be seen,
the self-ensemble teacher can easily achieve remarkable per-
formance with more than two experts. But the big gap be-
tween the self-ensemble teacher and the student impedes the
distillation when introducing too many experts. In general,
N ∈ [2, 5] is enough.

Effectiveness of loss terms. As shown in Table 4, we ex-
amine the contribution of each self-distillation loss, based
on EfficientNet-B0. The decoupled prediction ensemble dis-
tillation loss LDPED improves the baseline by 0.57%, while
the decoupled feature ensemble distillation LDFED brings the
0.81% mIoU gain. Applying these two distillation losses can
lead to 1.18% mIoU gain over LSS. Additionally, to verify
the efficacy of the “more to less” subset split strategy, we
apply a random rank of categories, and it reduces the mIoU
from 68.74% to 68.19%.

Conclusion
This paper presents a specialized self-knowledge distil-

lation architecture for semantic segmentation. The DPED
module provides reliable soft-label information for the stu-
dent in each sub-area. And the DFED mechanism enhances
the student backbone by aggregating the important feature
maps from the precedent layers. These two distillation com-
ponents address the issues in current T-S KD and Self-KD
methods. We confirm the large performance improvements
quantitatively, and verify the efficacy of each component
with various ablation studies. In the future, we will further
investigate this issue and extend our approach to other dense
prediction tasks (Deng et al. 2019) and Transformer-based
SS networks (Strudel et al. 2021; Xie et al. 2021).
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